
의뢰기관명	위드진(Free)	성명	테스트
검체 접수 번호	20221122-56399	생년월일/성별	990909 / M
결과 보고일	2022년 11월 22일	검사항목	위드진69

랩지노믹스는 보다 많은 연구와 고민을 통해 고객님의 건강한 삶에 한 발자국 더 다가가겠습니다. 건강한 삶이 일상이 될 수 있도록 기대하겠습니다.

WithGENE 서비스를 이용해주셔서 감사합니다.

01 서비스 소개

서비스 소개 해설 가이드

02 종합결과

03 상세결과

피부/모발 영양 및 대사 건강관리 개인특성 운동 식습관

04 부록

분석 유전자 목록 참고문헌 분석 안내서

이제는 건강해야 하고, 더 나아가 아름다워야 합니다.

높은 수준의 건강을 유지하기 위해서는 건강에 미치는 중요한 요인들을 파악하고 그 요인들이 개인의 신체적, 정서적, 사회적 건강 기능에 어떠한 영향을 미칠 것인지 고민해볼 필요가 있습니다. 100세 시대를 바라보는 우리에게 중요한 것은 더 이상 "질병에 걸리지 않는다"의 수준이 아닌, "어떻게 하면 더욱 아름답고 만족스럽게 건강을 유지할 것인가"에 관심을 모아야 합니다.

아름답고 만족스럽게 건강을 유지하기 위해서는 환경적 요인, 생활적 요인들을 조절하기에 앞서 본인이 태어날 때부터 가지고 있는 유전정보를 파악하여 자신에게 맞는 생활방식을 모색하고 개선 하는 것이 중요합니다.

WithGENE 검사는 유전정보 분석을 통해 개인의 건강관리를 위한 다양한 정보를 제공합니다. 유전정보의 해석을 바탕으로 유전적 특성을 고려한 맞춤형 개인 건강관리를 가능하게 합니다.

용어 이해

유전자, 영향인자, 나의 유전자형은 어떤 것들을 의미하는지 확인 할 수 있습니다.

상세결과 확인 전 종합결과 내용을 한 눈에 확인 할 수 있습니다.

내가 검사한 항목의 등급을 확인 할 수 있습니다.

해당 유전자가 **안심 / 보통 / 주의** 중 어디에 해당하는지 나타납니다.

동아시아인 인구통계학적 연구 결과를 바탕으로 평균대비 위험도를 퍼센테이지로 확인 할 수 있습니다.

유전자	역할	영향인자	나의 유전형
CLASP1	세포분열 및 증식에 관련된 유전자	Т	TC
HOTTIP	세포분열, 증식 및 발달과 미네랄 밀도와 관련된 유전자	Т	GT
PRDM8-FGF5	신호전달 경로와 연관되어 세포분열 및 증식에 관련된 유전자	С	TC
TBX2	신호전달 경로와 연관되어 세포분열 및 증식에 관련된 유전자	Α	AG

해당 유전자의 유전자형과 그 역할을 확인할 수 있습니다. 일반인자와 영향인자 유형이 나타나 있으며, 이를 토대로 나의 유전형과 비교하여 내 유전자 상태를 확인할 수 있습니다.

위드진 검사는 개인이 가지고 있는 유전형을 분석하여 유전적 위험도를 파악하고, 현재 생활습관을 살펴보고 개선할 수 있도록 도와드립니다.

주의로 표시 된 항목은 평소에 집중관리가 필요합니다. 잊지 말고 미리 예방하세요.

피부/모발

카테고리	항목		등급
	피부 염증	주의	-
	 태양 노출 후 태닝반응	보통	
	ㅡㅡㅡ 여드름 발생	보통	
	 튼살/각질	안심	•
	 원형 탈모	안심	•
피부/모발	 새치	안심	•
	 색소침착	안심	•
	 피부노화	안심	•
	 남성형 탈모	안심	•
	모발굵기	안심	•
	 기미/주근깨	안심	•

영양 및 대사

카테고리	항목		등급
영양 및 대사	비타민 D 농도	주의	-
	코엔자임Q10 농도	주의	-
	칼륨 농도	주의	-
	루테인&지아잔틴 농도	주의	-
	비타민 E 농도	주의	•

주의로 표시 된 항목은 평소에 집중관리가 필요합니다. 잊지 말고 미리 예방하세요.

영양 및 대사

카테고리	항목		등급
	비타민 B6 농도	보통	
	 칼슘 농도	보통	
	아르기닌 농도	보통	
	아연 농도	보통	
	 철 저장 및 농도	안심	•
	마그네슘 농도	안심	•
CHOE EL FILLI	지방산 농도	안심	•
영양 및 대사	비타민 A 농도	안심	•
	비타민 C 농도	안심	•
	비타민 K 농도	안심	•
	비타민 B12 농도	안심	•
	타이로신 농도	안심	•
	베타인 농도	안심	•
	셀레늄 농도	안심	•

건강관리

카테고리	항목	등급
건강관리	골질량	주의 -
	요산치	주의 -

주의로 표시 된 항목은 평소에 집중관리가 필요합니다. 잊지 말고 미리 예방하세요.

건강관리

카테고리	항목		등급
	 체지방률	보통	
	퇴행성 관절염증 감수성	보통	
	콜레스테롤	보통	
	중성지방농도	보통	
	운동에 의한 체중감량 효과	보통	
74 71 71 71	멀미	보통	
건강관리	체중감량 후 체중회복 가능성(요요 가능성)	안심	•
	체질량지수	안심	•
	혈당	안심	•
	혈압	안심	•
	비만	안심	•
	복부비만(엉덩이 허리 비율)	안심	•

개인특성

카테고리	항목	등급
개인특성	와인 선호도	화이트 와인
	수면습관/시간	긴 수면
	아침형, 저녁형 인간	저녁형 인간
	 니코틴 의존성	낮음

주의로 표시 된 항목은 평소에 집중관리가 필요합니다. 잊지 말고 미리 예방하세요.

개인특성

카테고리	항목		등급
	니코틴 대사	주의	-
	알코올 의존성	보통	
	카페인 의존성	보통	
게이트니	불면증	보통	
개인특성	통증 민감성	보통	
	알코올 홍조	안심	•
	카페인 대사	안심	•
	알코올 대사	안심	•

운동

카테고리	항목		등급
	 근력 운동 적합성	높음	•
	유산소 운동 적합성	낮음	-
	근육발달 능력	낮음	-
0 =	발목 부상 위험도	낮음	•
운동	악력	높음	•
	운동 후 회복 능력	낮음	-
	단거리 질주 능력	보통	
	지구력 운동 적합성	보통	

주의로 표시 된 항목은 평소에 집중관리가 필요합니다. 잊지 말고 미리 예방하세요.

식습관

카테고리	항목		등급
식습관	포만감	낮음	•
	단맛 민감도	높음	•
	쓴맛 민감도	높음	•
	~ 짠맛 민감도	낮음	-
	식욕	보통	

지속해서 자외선에 노출되면 멜라닌 세포에서 멜라닌 색소를 과도하게 생성하여 피부가 어두워지거나 황갈색이 됩니다. 색소침착은 피부 증상의 하나로 유전적 요인, 약물, 염증, 호르몬, 일광 노출 등 다양한 원인에 의해서 발생할 수 있습니다.

테스트님의 색소침착

분석결과는 "안심"입니다.

색소침착에 영향을 미치는 OCA2, MC1R 유전자를 분석하였습니다.

테스트님은

OCA2유전자는 CC, CC, MC1R유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 색소침착은 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
OCA2	멜라닌 색소 전구체인 티로신의 운반단백질에 관여하는 유전자	Т	СС
UCA2	클다한 역소 선구제한 디도선의 문반한역을에 된어하는 규전자 	С	СС
MC1R	멜라닌 세포 자극 호르몬 수용체 유전자	А	GG

주의사항

▶ 본 검사에서 제공하는 결과는 색소침착에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 색소침착과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 색소침착 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 색소침착 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

피부 노화는 피부층 부피의 감소와 탄력 저하, 건조한 피부, 깊은 주름 등 여러 가지 증상으로 나타납니다. 체내에 잔여 하는 여분의 당과 단백질이 결합하는 당화 현상은 콜라겐과 엘라스틴의 구조를 변화 시켜 피부 노화를 촉진합니다.

테스트님의 피부노화 분석결과는 "안심"입니다.

피부노화에 영향을 미치는 WDR1-ZNF518B, DEF8, SLC36A3-SLC36A2, HDAC4, AGER 유전자를 분석하였습니다.

테스트님은

WDR1-ZNF518B유전자는 GG, DEF8유전자는 TT, SLC36A3-SLC36A2유전자는 TT, HDAC4유전자는 TT, AGER유전자는 AA, CT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 피부노화는 **안심**수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
WDR1-ZNF518B	액틴필라멘트 분해 및 세포 이동과 관련 있는 유전자	T	GG
DEF8	세포 속 노폐물을 제거하는 리소좀 형성에 관여하는 유전자	С	TT
SLC36A3-SLC36A2	멜라닌 합성과 관련된 유전자	Т	TT
HDAC4	근세포 증강 인자와 상호 작용으로 근육 성숙에 연관된 유전자	С	TT
AGER	당화 산물을 분해하는 유전자	Т	AA
		Т	СТ

🥛 주의사항

▶ 본 검사에서 제공하는 결과는 피부노화에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 피부노화과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 피부노화 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 피부노화 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

남성형 탈모는 유전성 안드로겐성 탈모증이라고 하며, 남성 호르몬, 유전적인 요인, 스트레스 등 외부 환경적인 요인에 의해 나타나게 됩니다. 일단 탈모가 시작되면 증상이 지속되는 진행성 질환으로 초기에 적극적인 치료를 해야만 완화할 수있습니다. 원형탈모는 면역체계 이상으로 자신의 면역세포가 모낭 세포를 공격하면서 생기는 탈모 증상입니다.

남성형 탈모에 영향을 미치는 chr20p11 유전자를 분석하였습니다.

테스트님은

chr20p11유전자는 GG, CT유전자형을 가지고 있습니다.

테스트님의 남성형 탈모 분석결과는 "안심"입니다.

테스트님의 유전자형을 분석한 결과 남성형 탈모는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
chr20p11	남성형 탈모의 원인인 디하이드로테스토스테론의 합성에 관여하는 유전자	A	GG
	급성성 글도의 편한한 나아이므모네므모드네는의 합성에 선어야는 규선자	Т	СТ

☑ 주의사항

▶ 본 검사에서 제공하는 결과는 남성형 탈모에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 남성형 탈모과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 남성형 탈모 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 남성형 탈모 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

모발을 구성하는 단백질층이 감소하면 산소와 영양소의 공급이 원활하지 못해 모근이 약해지고 모발이 가늘어집니다. 가늘어진 모발은 탈모로 진행할 가능성이 커지기 때문에 초기 관리가 중요합니다.

모발굵기에 영향을 미치는 EDAR 유전자를 분석하였습니다.

테스트님은

EDAR유전자는 GG유전자형을 가지고 있습니다.

테스트님의 모발굵기 분석결과는 **"안심"**입니다.

테스트님의 유전자형을 분석한 결과 모발굵기는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
EDAR	모낭 세포의 성장을 촉진하여 모발의 상태를 결정하는 유전자	А	GG
-			

주의사항

▶ 본 검사에서 제공하는 결과는 모발굵기에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 모발굵기과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 모발굵기 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 모발굵기 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

기미와 주근깨는 자외선으로부터 피부를 보호하기 위해 피부색을 결정하는 멜라 닌 색소가 과도하게 분비되면서 생기는 피부 질환 입니다. 기미는 자외선, 호르몬, 임신, 피임제 복용 등이 원인이 될 수 있으며, 주근깨는 유전적인 원인에 영향을 많이 받습니다.

테스트님의 기미/주근깨 분석결과는 "안심"입니다. 기미/주근깨에 영향을 미치는 BNC2, EMX2OS-RAB11FIP2, AKAP1-MSI2, PPARGC1B 유전자를 분석하였습니다.

테스트님은

BNC2유전자는 TC, EMX2OS-RAB11FIP2유전자는 TC, AKAP1-MSI2유전자는 CA, PPARGC1B유전자는 CT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 기미/주근깨는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
BNC2	피부색에 관여하는 유전자	C	TC
EMX2OS-RAB11FIP2	색소침착 발생에 연관된 유전자	Т	TC
AKAP1-MSI2	각종 호르몬 또는 신경전달물질의 신호전달에 연관된 유전자	С	CA
PPARGC1B	에너지 소비 및 주근깨와 연관성이 있는 유전자	С	СТ

🧻 주의사항

▶ 본 검사에서 제공하는 결과는 기미/주근깨에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 기미/주근깨과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 기미/주근깨 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 기미/주근깨 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

여드름은 피지가 모낭 속에 갇혀 염증을 불러일으키는 만성 피부 염증 질환입니다. 호르몬 변화, 세균 감염, 스트레스, 수면 부족, 유전적 요인 등이 복합적으로 작용합니다.

테스트님의 여드름 발생 분석결과는 "보통"입니다. 여드름 발생에 영향을 미치는 PCNX3, SEMA4B, TGFB2-LYPLAL1, LYPLAL1-SLC30A10 유전자를 분석하였습니다.

테스트님은

PCNX3유전자는 TT, SEMA4B유전자는 AG, TGFB2-LYPLAL1유전자는 GA, LYPLAL1-SLC30A10유전자는 CT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 여드름 발생은 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
PCNX3	· - 모낭 발달과 형태 형성 관련성이 보고된 유전자	Т	TT
SEMA4B	포장 글글피 형네 항형 천단장이 보고된 휴인자 -	А	AG
TGFB2-LYPLAL1	각질 및 피지 생성에 관련된 유전자	А	GA
LYPLAL1-SLC30A10	모낭 발달과 형태 형성 관련성이 보고된 유전자	С	СТ

🧻 주의사항

▶ 본 검사에서 제공하는 결과는 여드름 발생에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 여드름 발생과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 여드름 발생 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 여드름 발생 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

피부염증은 원인이 불확실하고 그 형태와 양상이 매우 다양합니다. 외부 자극으로 부터 내부를 보호하는 피부 장벽이 손상되면 피부 세포의 느슨함으로 염증이 생길 수 있습니다. 피부 염증은 유전적인 요인, 환경적 요인, 면역학적 요인 등이 복합적 으로 작용하여 발생합니다.

피부 염증에 영향을 미치는 FAM72C, RNF145-UBLCP1 유전자를 분석하였습니다.

테스트님은

FAM72C유전자는 GT, RNF145-UBLCP1유전자는 TT유전자형을 가지고 있습니다.

테스트님의 피부 염증 분석결과는 "주의"입니다.

테스트님의 유전자형을 분석한 결과 피부 염증은 주의수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
FAM72C	· 피부 염증 발생에 관련된 유전자	G	GT
RNF145-UBLCP1	· 씨구 집중 글중에 천단선 휴산사	Т	TT

🤳 주의사항

▶ 본 검사에서 제공하는 결과는 피부 염증에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 피부 염증과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 피부 염증 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 피부염증 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

자외선에 피부가 노출되면 외부 자극으로부터 피부를 보호하기 위해 멜라닌 색소가 생성됩니다. 멜라닌에서 생성되는 갈색 색소에 의해 피부 색조가 어두워지는 태닝 반응이 일어납니다. 과도한 자외선 노출은 화상의 위험도와 피부암 발생의원인이 될 수 있기 때문에 피부 건강을 위한 적당한 태닝과 자외선 차단제 사용이요구됩니다.

태양 노출 후 태닝반응에 영향을 미치는 SLC45A2, PPARGC1B, GRM5, PRDM15 유전자를 분석하였습니다.

테스트님은

SLC45A2유전자는 TT, PPARGC1B유전자는 CT, GRM5유전자는 AG, PRDM15유전자는 AA유전자형을 가지고 있습니다.

테스트님의 태양 노출 후 태닝반응 분석결과는

"보통"입니다.

테스트님의 유전자형을 분석한 결과 태양 노출 후 태닝반응은 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
SLC45A2	멜라닌 합성 과정에 관련된 유전자		TT
PPARGC1B	에너지 소비 조절과 연관된 유전자	T	СТ
GRM5	태양에 그을리는 반응을 조절하는 것에 관여하는 유전자	G	AG
PRDM15	세포 운명을 조절하는 데 사용되는 전사 조절 유전자	G	AA

☑ 주의사항

▶ 본 검사에서 제공하는 결과는 태양 노출 후 태닝반응에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 태양 노출 후 태닝반응과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 태양 노출 후 태닝반응 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 태양 노출 후 태닝반응 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

튼살은 피부조직이 팽창과 수축의 과정이 반복되고, 표피의 위축과 진피의 탄력이 감소하면서 나타납니다. 성장기나 임신 중에 분비되는 호르몬이 콜라겐의 활성을 방해하여 피부조직이 느슨해졌을 때, 급격한 체중 변화로 인해 피부가 갈라지게 됩니다. 각질층은 수분 손실을 막고 외부 유해 인자로부터 피부를 보호하는 역할을 하는데 일정 기간 떨어져 나가지 않고 피부에 쌓이면서 거친 피부를 만듭니다.

테스트님의 튼살/각질

분석결과는 "안심"입니다.

튼살/각질에 영향을 미치는 TMEM270-ELN, HMCN1 유전자를 분석하였습니다.

테스트님은

TMEM270-ELN유전자는 TC, HMCN1유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 튼살/각질은 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
TMEM270-ELN	조직 탄성과 관련된 유전자	C	TC
HMCN1	튼 살과 관련된 유전자	С	GG

☑ 주의사항

▶ 본 검사에서 제공하는 결과는 튼살/각질에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 튼살/각질과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 튼살/각질 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 튼살/각질 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

원형 탈모는 모발이 원형으로 빠지는 질환으로 면역체계 이상반응으로 인해 면역 세포가 모낭세포를 공격하면서 생기는 비교적 흔한 탈모 질환입니다. 질환은 다양 한 형태와 부위에 나타날 수 있으며 두피 모발 외에 눈썹이나 수염의 모발 소실도 일어날 수 있습니다.

원형 탈모에 영향을 미치는 ACOXL, IL2-IL21, IL13, IL2RA 유전자를 분석하였습니다.

테스트님은

ACOXL유전자는 AC, IL2-IL21유전자는 GC, IL13유전자는 AA, IL2RA유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 원형 탈모는 **안심**수준으로 예상됩니다.

테스트님의 원형 탈모 분석결과는 "안심"입니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
ACOXL	대사와 관련된 유전자	Α	A C
IL2-IL21	면역세포 성장 촉진 및 면역 반응과 연관된 유전자	G	GC
IL13	면역 반응과 연관된 유전자	А	AA
IL2RA	면역 반응과 관련된 유전자	С	TT

🧻 주의사항

▶ 본 검사에서 제공하는 결과는 원형 탈모에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 원형 탈모과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 원형 탈모 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 원형 탈모 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

노화가 진행되면서 멜라닌 세포 수의 감소와 기능이 떨어지면서 새치가 발생합니다. 젊은 사람에게 생기는 새치는 호르몬 이상, 스트레스, 비만, 영양의 불균형, 유전적 요인, 당뇨병과 같은 질환이 원인이 될 수도 있습니다.

새치에 영향을 미치는 IRF4 유전자를 분석하였습니다.

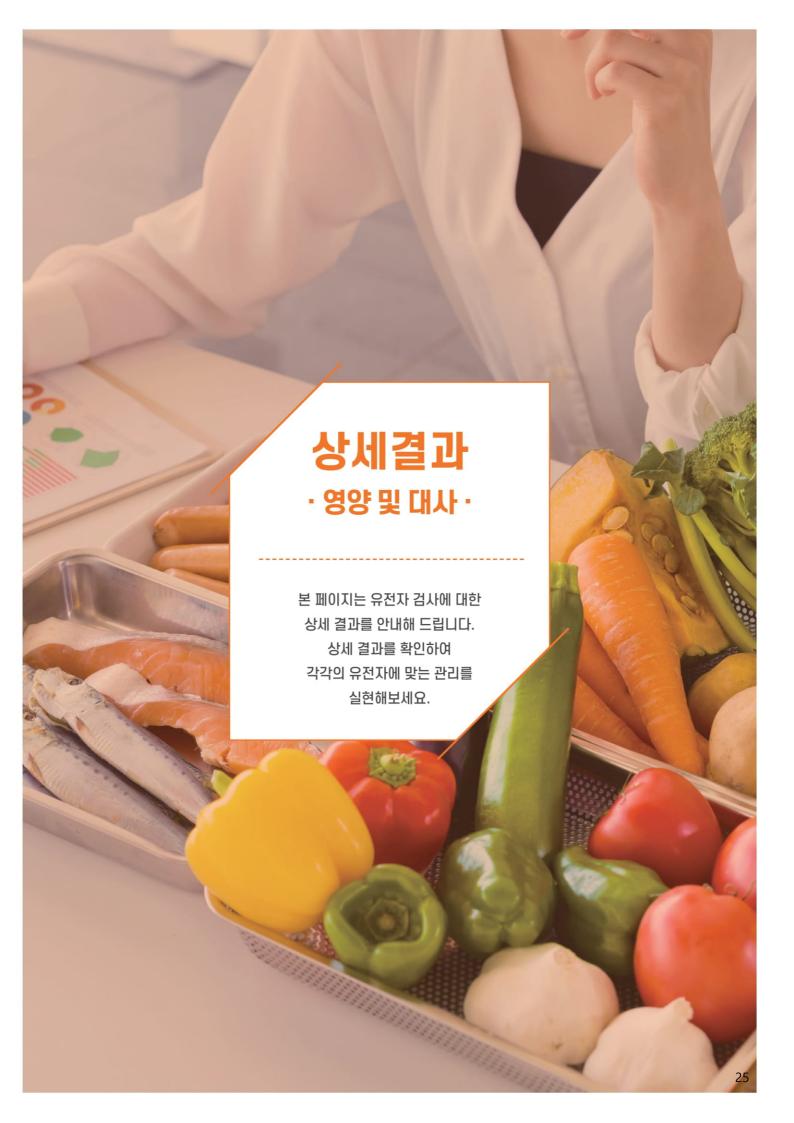
테스트님은

IRF4유전자는 CC IRF4유전자형을 가지고 있습니다.

테스트님의 새치 분석결과는 **"안심"**입니다.

테스트님의 유전자형을 분석한 결과 새치는 **안심**수준으로 예상됩니다.

🙀 유전자형


유전자	역할	영향인자	나의 유전형
IRF4	모발 색상과 관련된 유전자	Т	СС

주의사항

▶ 본 검사에서 제공하는 결과는 새치에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 새치과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 새치 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 새치 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

체내에서 항산화 물질로 작용하는 비타민C는 콜라겐 합성 효소의 활성화, 면역작용, 철분 흡수 등의 기능을 수행하는 인체 필수 성분 중 하나입니다. 결핍 시 괴혈병, 피로감, 쇠약감 등의 증상을 유발 할 수 있기 때문에, 신선한 과일과 채소의 권장량 섭취를 통해 체내의 적절한 비타민C 농도를 유지하는 것이 좋습니다.

테스트님의 비타민 C 농도 분석결과는 **"안심"**입니다. 비타민 C 농도에 영향을 미치는 SLC23A1, SLC23A2 유전자를 분석하였습니다.

테스트님은

SLC23A1유전자는 TC, GA, CC, SLC23A2유전자는 GA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 비타민 C 농도는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
		Т	TC
SLC23A1	신장에서 비타민을 재흡수 하는 기능을 담당하여 체내의 비타민C 농도를 결정	G	GA
		Т	СС
SLC23A2	비타민C의 흡수 및 전달하는 수송체와 관련된 유전자	G	GA

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 C 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 C 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 C 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 C 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

지용성으로 분류되는 비타민D는 골격 형성에 필요한 칼슘의 흡수와 운송에 중요한 역할을 합니다. 결핍 시 뼈의 성장 장애, 구루병, 현기증 등의 증상이 나타날 수있으며, 과다 섭취할 경우 고칼슘혈증, 식욕 부진 등의 부작용이 발생할 수 있습니다. 태양 광선은 비타민D 합성에 중요한 역할을 하므로 주기적인 외부 노출을 통해서 체내에 필요한 비타민D를 합성하는 것이 좋습니다.

비타민 D 농도에 영향을 미치는 GC 유전자를 분석하였습니다.

테스트님은

GC유전자는 TT유전자형을 가지고 있습니다.

테스트님의 비타민 D 농도 분석결과는 **"주의"**입니다.

테스트님의 유전자형을 분석한 결과 비타민 D 농도는 **주의**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
GC	혈액 내 비타민D 대사물질의 수송에 관여하는 유전자로 혈중 비타민 D 농도를 유지	Т	TT

💶 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 D 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 D 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 D 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 D 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

항산화 작용을 비롯한 세포의 성장과 유지에 중요한 역할을 하며, 피로 해소와 면역력 증강에 도움이 됩니다. 일반적으로 식품의 섭취와 체내 합성을 통해 결핍되는 일이 거의 없지만 나이가 들수록 합성량이 감소할 수 있습니다.

코엔자임Q10 농도에 영향을 미치는 SWI5 유전자를 분석하였습니다.

테스트님은

SWI5유전자는 GG유전자형을 가지고 있습니다.

테스트님의 코엔자임Q10 농도 분석결과는 "주의"입니다.

테스트님의 유전자형을 분석한 결과 코엔자임Q10 농도는 **주의**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
SWI5	세포의 핵 내의 DNA 대사 과정과 관련된 유전자	G	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 코엔자임Q10 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 코엔자임Q10 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 코엔자임Q10 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 코엔자임Q10 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

마그네슘은 신체를 형성하는 무기질 중 하나로 에너지의 생산, 근육 수축, 신경 기능, 뼈와 치아의 형성, 체내의 효소 및 신진대사 등에 중요한 역할을 합니다. 체내마그네슘 농도는 신장에서 조절되며, 결핍 시 식욕감퇴, 피로, 근육 경련, 발작 등의 증상이 발생할 수 있습니다. 해조류, 견과류, 생선류 등의 음식 섭취가 체내의마그네슘 농도를 높이는 데 도움이 됩니다.

마그네슘 농도 에 영향을 미치는 MUC1 유전자를 분석하였습니다.

테스트님은

MUC1유전자는 TT유전자형을 가지고 있습니다.

테스트님의 마그네슘 농도 분석결과는 "안심"입니다.

테스트님의 유전자형을 분석한 결과 마그네슘 농도 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
MUC1	골밀도 조절에 관여하여 골밀도 형성에 중요한 마그네슘 혈중 농도 결정	С	TT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 마그네슘 농도 에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 마그네슘 농도 과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 마그네슘 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 마그네슘 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

세포 성장과 면역작용 등 체내에 여러 가지 대사 작용에 필요한 미량 무기질입니다. 체내의 효소 및 조효소의 구성원소로 작용을 하며, 인슐린 생성과 면역시스템 강화를 도와줍니다. 결핍 시 지속적인 피로감, 피부 질환, 면역력 감퇴 등의 증상들을 유발할 수 있습니다.

아연 농도에 영향을 미치는 SLC30A3 유전자를 분석하였습니다.

테스트님은

SLC30A3유전자는 GG유전자형을 가지고 있습니다.

테스트님의 아연 농도 분석결과는 "보통"입니다.

테스트님의 유전자형을 분석한 결과 아연 농도는 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
SLC30A3	체내 아연 운송 및 축적에 관련 유전자	G	GG

🪺 주의사항

▶ 본 검사에서 제공하는 결과는 아연 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 아연 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 아연 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 아연 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

철분은 헤모글로빈을 구성하는 요소로, 헤모글로빈은 체내 조직에서 혈액 생성 및 산소 운반에 중요한 역할을 합니다. 철분 섭취는 빈혈, 어린이 성장 및 발달 등에 도움이 됩니다.

철 저장 및 농도에 영향을 미치는 KCTD17-TMPRSS6 유전자를 분석하였습니다.

테스트님은

KCTD17-TMPRSS6유전자는 CC, GG, CC, AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 철 저장 및 농도는 **안심**수준으로 예상됩니다.

테스트님의 철 저장 및 농도 분석결과는 "안심"입니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
KCTD17-TMPRSS6	체내 철분 균형과 관련 있는 유전자	Т	СС
		А	GG
TMPRSS6	체내 철분 대사의 주요 유전자 발현을 억제하여 혈중 철분 농도 항상성을 유지	Т	СС
		G	AA

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 철 저장 및 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 철 저장 및 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 철 저장 및 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 철 저장 및 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

칼륨은 삼투압을 조절하여 체내 수분량을 조절하고, 나트륨과 같은 전해질의 균형을 맞춰주는 영양소입니다. 근육의 수축과 이완, 신경전달, 산·염기 균형 조절, 혈당의 글리코겐 전환, 혈압 유지 등에 중요한 역할을 합니다.

테스트님의 칼륨 농도 분석결과는 "주의"입니다.

칼륨 농도에 영향을 미치는 CLASP1, PRDM8-FGF5, HOTTIP, TBX2 유전자를 분석하였습니다.

테스트님은

CLASP1유전자는 CC, PRDM8-FGF5유전자는 CC, HOTTIP유전자는 GT, TBX2유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 칼륨 농도는 주의수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
CLASP1	세포분열 및 증식에 관련된 유전자	T	СС
PRDM8-FGF5	신호절달 경로와 연관되어 세포분열 및 증식에 관련된 유전자	С	СС
HOTTIP	세포분열, 증식 및 발달과 미네랄 밀도와 관련된 유전자	T	GT
TBX2	신호절달 경로와 연관되어 세포분열 및 증식에 관련된 유전자	Α	AA

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 칼륨 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 칼륨 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 칼륨 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 칼륨 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

칼슘은 신체의 전해질 중 하나로 대부분의 체내 칼슘은 뼈에 저장됩니다. 뼈와 치아의 형성과 유지에 꼭 필요한 성분이며,일부는 근육 세포 및 혈액에 존재하여 근육의 수축과 이완을 조절하고, 신경 자극 전달, 혈관 수축 등의 대사과정에도 관여합니다.

테스트님의 칼슘 농도 분석결과는 "보통"입니다. 칼슘 농도에 영향을 미치는 BCAS3, BCAS1-CYP24A1 유전자를 분석하였습니다.

테스트님은

BCAS3유전자는 TT, BCAS1-CYP24A1유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 칼슘 농도는 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
BCAS3	세포 골격 재구성 매개 및 미네랄 밀도와 연관된 유전자	T	TT
BCAS1-CYP24A1	비타민 D 대사 효소의 생성을 조절하여 혈중 칼슘 흡수 및 유지 기능에 작용	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 칼슘 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 칼슘 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 칼슘 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 칼슘 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

아르기닌은 체내를 구성하는 아미노산 중 하나로, 혈관을 이완 시켜 혈액의 흐름을 원활하게 하는 데 도움을 줍니다. 심장 질환 및 순환계 관련 질환의 증상 완화에 도움이 될 수 있습니다.

테스트님의 아르기닌 농도 분석결과는 "보통"입니다. 아르기닌 농도에 영향을 미치는 AGXT2, DDAH1, PTPRE-MGMT, NRX1-ASB3 유전자를 분석하였습니다.

테스트님은

AGXT2유전자는 CT, DDAH1유전자는 GG, PTPRE-MGMT유전자는 TT, NRX1-ASB3유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 아르기닌 농도는 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
AGXT2	요독 대사와 관련된 유전자	C	СТ
DDAH1	요독 대사에 연관이 있는 산화질소를 조절하는 유전자	Т	GG
PTPRE-MGMT	아르기닌 농도 조절과 관련된 유전자	Т	TT
NRX1-ASB3	미네랄 밀도와 연관된 유전자	G	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 아르기닌 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 아르기닌 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 아르기닌 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 아르기닌 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

지방의 소화에 의해 유리되는 필수 지방산인 오메가-3 지방산과 오메가-6 지방산은 체내에서 합성될 수 없기 때문에 식품 섭취를 통해 체내 적정 농도를 유지해야합니다. 필수 지방산은 혈관의 건강을 유지하고, 지방세포의 증식과 염증반응을 조절하는 데 중요한 역할을 합니다.

지방산 농도에 영향을 미치는 FFAR1, FABP2, ADIPOR2 유전자를 분석하였습니다.

테스트님은

FFAR1유전자는 AA, FABP2유전자는 CC, ADIPOR2유전자는 CT유전자형을 가지고 있습니다.

테스트님의 지방산 농도 분석결과는 "안심"입니다.

테스트님의 유전자형을 분석한 결과 지방산 농도는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
FFAR1	인슐린 대사 조절과 관련된 유전자	G	AA
FABP2	지방산 수송 기능을 통해 체내의 지방산 농도를 조절하는 유전자	Т	СС
ADIPOR2	지방산 산화 및 포도당 흡수와 관련된 유전자	Т	СТ

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 지방산 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 지방산 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 지방산 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 지방산 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

비타민A는 시각 기능, 피부 건강, 면역체계에 관여하는 영양소입니다. 특히, 레티놀 형태의 비타민A는 피부 노화 방지에 도움이 되는 것으로 알려져 있으며, 세포의 기능 유지 및 면역체계 유지에도 중요한 역할을 합니다.

테스트님의 비타민 A 농도 분석결과는 "안심"입니다. 비타민 A 농도에 영향을 미치는 PKD1L2, PKD1L2-BCO1 유전자를 분석하였습니다.

테스트님은

PKD1L2유전자는 TG, PKD1L2-BCO1유전자는 CT, GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 비타민 A 농도는 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
PKD1L2	시력 유지에 연관된 레티놀 농도를 조절하는 유전자	Т	TG
PKD1L2-BCO1	양이온 채널 구성 및 비타민A 베타-카로틴 대사 관련 유전자	С	СТ
		T	G G

💶 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 A 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 A 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 A 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 A 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

수용성 비타민의 한 종류로, 대사 작용의 활성화 신경 전달 물질의 합성, 적혈구형성 등과 연관되어있으며, 단백질의 분해와 합성을 도와 피부의 건강 유지에 중요한 영양소입니다.

비타민 B6 농도에 영향을 미치는 NBPF3-ALPL 유전자를 분석하였습니다.

테스트님은

NBPF3-ALPL유전자는 CT유전자형을 가지고 있습니다.

테스트님의 비타민 B6 농도 분석결과는 "보통"입니다.

테스트님의 유전자형을 분석한 결과 비타민 B6 농도는 보통수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
NBPF3-ALPL	비타민B6 대사 관련 호르몬인 NBPF3 합성을 조절하여 체내 비타민B6 농도 조절	С	СТ

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 B6 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 B6 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 B6 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 B6 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

지용성으로 분류되는 비타민E는 혈관의 탄력을 유지하고, 노화 방지, 피부미용, 혈전 생성의 방지와 혈액 순환 등에 도움이 됩니다. 또, 지방 산화를 막아 세포를 보호하므로 관련 질환을 예방하는 데 도움이 될 수 있습니다.

테스트님의 비타민 E 농도 분석결과는 **"주의"**입니다. 비타민 E 농도에 영향을 미치는 ZPR1, CYP4F2, SCARB1 유전자를 분석하였습니다.

테스트님은

ZPR1유전자는 GC, CYP4F2유전자는 CC, SCARB1유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 비타민 E 농도는 **주의**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
ZPR1	제내 비타민E 사용과 관련된 다른 유전자를 활성화하는 데 도움이 되는 유전자	C	GC
CYP4F2	스테로이드 및 기타 지질의 합성과 대사 촉매에 관여하는 유전자	С	СС
SCARB1	체내 비타민E 흡수와 관련된 유전자	G	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 E 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 E 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 E 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 E 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

비타민 K는 뼈를 구성하는 단백질을 합성하고, 뼈의 미네랄 밀도를 높이는 등 뼈를 견고하게 하는 데 중요한 역할을 하는 영양소입니다. 또, 혈관이 손상될 때 혈액 응고를 촉진하는 역할로 과도한 출혈을 막아줍니다.

비타민 K 농도에 영향을 미치는 TMED7-CDO1 유전자를 분석하였습니다.

테스트님은

TMED7-CDO1유전자는 GG유전자형을 가지고 있습니다.

테스트님의 비타민 K 농도 분석결과는 **"안심"**입니다.

테스트님의 유전자형을 분석한 결과 비타민 K 농도는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
TMED7-CDO1	단백질의 구성 성분인 아미노산 대사와 관련이 있는 유전자	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 K 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 K 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 K 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 K 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

비타민 B12는 세포분열 및 DNA 합성에 중요한 역할을 합니다. 또, 엽산과 함께 적혈구 생성에 관여하여 빈혈 예방에 도움을 주며, 정상적인 신경 기능에 필요한 영양소입니다. 간에 저장되기 때문에 결핍 증상은 거의 없으나, 비타민 B12는 동물성 식품에 들어있기 때문에 채식주의자의 경우 부족할 수도 있습니다.

테스트님의 비타민 B12 농도 분석결과는 **"안심"**입니다. 비타민 B12 농도에 영향을 미치는 CUBN, MUT 유전자를 분석하였습니다.

테스트님은

CUBN유전자는 GG, MUT유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 비타민 B12 농도는 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
CUBN	비타민B12 체내 흡수에 관여하는 유전자	Α	GG
MUT	체내 다양한 아미노산 대사와 관련된 유전자	С	GG

👖 주의사항

▶ 본 검사에서 제공하는 결과는 비타민 B12 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비타민 B12 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비타민 B12 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비타민 B12 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

타이로신은 단백질을 구성하는 아미노산의 일종으로 신경 세포의 흥분과 억제를 전달하는 아드레날린과 노르아드레날린, 도파민 등의 각종 신경전달물질의 생산 과정에 관여합니다. 타이로신은 우울증 개선 및 스트레스 완화에 도움이 되며, 멜 라닌 색소 함성에 관여하여 흰머리 예방에 도움이 되는 것으로 알려져 있습니다.

테스트님의 타이로신 농도 분석결과는 "안심"입니다. 타이로신 농도에 영향을 미치는 TM6SF2, TAT-MARVELD3, REV3L 유전자를 분석하였습니다.

테스트님은

TM6SF2유전자는 CC, TAT-MARVELD3유전자는 AT, REV3L유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 타이로신 농도는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
TM6SF2	혈중 타이로신 농도에 연관된 유전자	С	СС
TAT-MARVELD3	타이로신의 아미노산화와 연관되어 있는 유전자	T	ΑT
REV3L	이온 수송 매개 및 DNA 손상 보호에 관련된 유전자	T	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 타이로신 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 타이로신 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 타이로신 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 타이로신 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

베타인은 체내 독성 물질로 작용하는 호모시스테인을 낮춰 심혈관질환을 예방하고, 지방 분해, 인슐린 저항성 개선, 신체 근육의 강화 및 근력 향상 등에 도움이되는 영양소입니다.

테스트님의 베타인 농도 분석결과는 "안심"입니다. 베타인 농도에 영향을 미치는 BHMT2, BHMT-JMY, CPS1 유전자를 분석하였습니다.

테스트님은

BHMT2유전자는 AG, BHMT-JMY유전자는 AC, CPS1유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 베타인 농도는 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
BHMT2	베타인 대사 속도를 증가시켜 핼액 내 베타인 농도를 조절하는 유전자	Α	A G
BHMT-JMY	베타인이 포함된 대사 과정을 조절하는 유전자	Α	AC
CPS1		С	TT

🥦 주의사항

▶ 본 검사에서 제공하는 결과는 베타인 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 베타인 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 베타인 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 베타인 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

체내 필수적인 미량무기질이며, 항산화 작용으로 신체 조직의 노화와 변성을 막아주거나 지연시키는 데 도움을 줍니다. 또, 해독작용과 면역 기능 증진을 통해 관련 염증 질환 예방과 남성의 전립선 기능 개선에 도움이 되는 영양소입니다.

유전자를 분석하였습니다.

테스트님은

BHMT유전자는 CT, NEIL3-AGA유전자는 CA, SLC39A11유전자는 GG유전자형을 가지고 있습니다.

셀레늄 농도에 영향을 미치는 BHMT, NEIL3-AGA, SLC39A11

테스트님의 셀레늄 농도 분석결과는 "안심"입니다.

테스트님의 유전자형을 분석한 결과 셀레늄 농도는 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
внмт	메티오닌-호모시스테인 대사에 관여하는 유전자	T	СТ
NEIL3-AGA	· · 혈중 셀레늄 농도와 연관성이 있는 유전자	С	CA
SLC39A11	· 철중 철대품 중포과 한한영이 있는 규선사 	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 셀레늄 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 셀레늄 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 셀레늄 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 셀레늄 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

루테인은 망막의 중심부인 황반의 구성물질로 눈에 자극이 되는 외부 유해 요인들로부터 눈을 보호하는 기능을 합니다. 또, 지아잔틴은 황반의 중심부에 밀집되어 존재하며, 황반 색소의 밀도를 유지하여 눈 건강에 도움을 주는 영양소입니다.

테스트님의 루테인&지아잔틴 농도 분석결과는 "주의"입니다. 루테인&지아잔틴 농도에 영향을 미치는 BCO1, PKD1L2-BCO1 유전자를 분석하였습니다.

테스트님은

BCO1유전자는 TT, PKD1L2-BCO1유전자는 GG, GG PKD1L2-BCO1유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 루테인&지아잔틴 농도는 주의수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
BCO1	베타-카로틴을 비타민 A로 전환하는 기능	Т	TT
PKD1L2-BCO1	루테인&지아잔틴 농도와 연관성이 있는 유전자	G	GG
		G	GG

- 주의사항

▶ 본 검사에서 제공하는 결과는 루테인&지아잔틴 농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 루테인&지아잔틴 농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 루테인&지아잔틴 농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 루테인&지아잔틴 농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다
- ▶ 본 검사는 예방 목적으로 보충제의 사용보다 해당 성분을 포함한 자연 식품 섭취를 권고합니다.

중성지방은 신체의 주요 에너지원으로 혈액을 순환하면서 에너지 운반 및 저장, 장기나 조직을 유지하는 역할을 합니다. 혈중 중성지방 농도가 높아지면 고지혈 증, 동맥경화, 심장병, 뇌졸중 등의 혈관질환이 발생할 위험이 커집니다.

테스트님의 중성지방농도 분석결과는 "보통"입니다.

중성지방농도에 영향을 미치는 TRIB1-FAM84B, AQP9-LIPC, GCKR, TBL2, ANGPTL3, MLXIPL 유전자를 분석하였습니다.

테스트님은

TRIB1-FAM84B유전자는 AG, AQP9-LIPC유전자는 TC, CC, GCKR유전자는 TT, TBL2유전자는 CC, AG, ANGPTL3유전자는 GT, MLXIPL유전자는 CC유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 중성지방농도는 보통수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
TRIB1-FAM84B	지방 생성과 관련된 유전자	Α	A G
A ODO LIDO	조선된바 노트이 과려서의 타그를 오저지	С	TC
AQP9-LIPC	중성지방 농도와 관련성이 보고된 유전자	Т	СС
GCKR	포도당 대사 조절에 관여하며, 포도당을 체내에 중성지방 형태로 저장	T	TT
TBL2	중성지방 농도와 관련성이 보고된 유전자	С	СС
TRIB1	간의 지방 생성을 억제하는 유전자	A	AG
ANGPTL3	혈중 중성지방을 세포로 흡수시켜 농도를 조절하는 유전자	T	GT
MLXIPL	혈중 포도당에 반응하여 인슐린 분비를 촉진하는 유전자	С	СС
<u> </u>			

🔃 주의사항

▶ 본 검사에서 제공하는 결과는 중성지방농도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 중성지방농도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 중성지방농도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 중성지방농도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

체질량지수는 비만도를 나타내는 지표로 체중을 신장의 제곱으로 나눈 값 (kg/m²) 입니다. 체지방량과 상관관계가 높고, 체중과 신장을 이용한 비만 평가 방법 중 가장 널리 사용되고 있습니다. 우리나라의 경우 BMI 18.5 미만은 저체중, 18.5 이상에서 25 미만은 정상, BMI 25 이상을 비만으로 분류하고 있습니다.

테스트님의 체질량지수

분석결과는 "안심"입니다.

체질량지수에 영향을 미치는 MC4R, BDNF, FTO 유전자를 분석하였습니다.

테스트님은

MC4R유전자는 GG, BDNF유전자는 TT, FTO유전자는 TT, TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 체질량지수는 **안심**수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
MC4R	식욕 억제를 통해 에너지 섭취의 균형을 조절하는 유전자	A	GG
BDNF	식욕을 억제하는 렙틴 호르몬 생성에 관여하는 유전자	С	TT
FTO	식욕을 조절하는 호르몬인 그렐린과 렙틴 호르몬 수치에 관련된 유전자	А	TT
	그윽을 꼬들이는 오르는한 그들한의 답한 오르는 무지에 한한한 유현지	А	TT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 체질량지수에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 체질량지수과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 체질량지수 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 체질량지수 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

콜레스테롤은 세포막의 구성성분으로 소화액인 담즙 생성 및 호르몬 조절에 관여하는 신체 내 꼭 필요한 물질입니다. 콜레스테롤은 혈액 내 순환하면서 단백질과의 결합 정도에 따라 중성 지방, 저밀도지단백(LDL), 고밀도지단백(HDL) 등으로 분류됩니다. LDL은 간에서 말초 장기로, HDL은 말초 장기에서 간으로 콜레스테롤을 운반하는 역할을 합니다. LDL이 높을수록 장기로 보내지는 콜레스테롤양이 증가하고, 혈관질환 발생 위험성은 증가 할 수 있습니다.

테스트님의 콜레스테롤 분석결과는 "보통"입니다.

콜레스테롤에 영향을 미치는 SNX13, APOA5-APOA4, CMIP, HPR, POLK, MYRF, CETP, HMGCR 유전자를 분석하였습니다.

테스트님은

SNX13유전자는 TT, APOA5-APOA4유전자는 GA, CMIP유전자는 CC, HPR유전자는 GA, POLK유전자는 TT, MYRF유전자는 AA, CETP유전자는 CC, HMGCR유전자는 CC, TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 콜레스테롤은 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
SNX13	HDL 콜레스테롤 대사와 관련된 유전자	G	TT
APOA5-APOA4	혈중 지방 수치와 연관된 유전자	A	GA
CMIP	콜레스테롤과 연관성이 보고된 유전자	С	СС
HPR	HDL 콜레스테롤 대사와 관련된 유전자	A	GA
POLK	콜레스테롤과 연관성이 보고된 유전자	Т	TT
MYRF	지방산 대사와 관련성이 보고된 유전자	G	AA
CETP	HDL 콜레스테롤 대사에 관여하여, 섭취된 콜레스테롤을 에너지로 전환하는 유전자	С	СС
	가에 나 코게 사내로의 참서한 느 이저지	С	СС
HMGCR	간에서 콜레스테롤을 합성하는 유전자	Т	TT

주의사항

▶ 본 검사에서 제공하는 결과는 콜레스테롤에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 콜레스테롤과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 콜레스테롤 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 콜레스테롤 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

혈액 내 포함된 포도당의 농도로, 인체는 항상성 유지를 위해 혈당 수치를 일정한 범위 내로 유지해야 합니다. 대한당뇨병학회에서 제시하는 공복 상태일 때의 정상혈당 수치는 100mg/dl이며, 기준치 이상의 경우 다뇨, 피로감, 어지러움 등의 증상이 나타날 수 있습니다.

테스트님의 혈당 분석결과는 **"안심"**입니다. 혈당에 영향을 미치는 KCNQ1, CDKAL1, SLC30A8, SIX3-SIX2, CDKN2A/B, MTNR1B, DGKB-TMEM195, GCK 유전자를 분석하였습니다.

테스트님은

KCNQ1유전자는 GA, CDKAL1유전자는 TC, SLC30A8유전자는 GA, CT, SIX3-SIX2유전자는 GC, CDKN2A/B유전자는 TT, MTNR1B유전자는 CC, DGKB-TMEM195유전자는 CT, GCK유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 혈당은 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
KCNQ1	세포 이온 채널 관여하는 유전자	G	G A
CDKAL1	인슐린 생산 감소와 관련되어 혈당을 조절하는데 연관된 유전자	С	TC
SLC30A8	인슐린 수송과 관련된 유전자로 혈중에 존재하는 포도당을 글리코겐으로 전환	G	G A
SLCSUAO	· 프로인 구승의 인인된 규인자도 활동에 근세하는 포도성을 됩니고댄으로 인된	С	СТ
SIX3-SIX2	·	С	GC
CDKN2A/B	- - 혈당과 관련성이 보고된 유전자	Т	TT
MTNR1B	- 물성의 천단성이 모고된 규전자	G	СС
DGKB-TMEM195		Т	СТ
GCK	체내 포도당 대사 과정에서 관여하여 탄수화물 대사를 조절하는 역할	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 혈당에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 혈당과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 혈당 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 혈당 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

혈압은 혈관을 따라 흐르는 혈액이 혈관 벽에 주는 압력을 의미합니다. 수축기 혈압과 이완기 혈압을 기준으로 측정되며, 수축기 혈압 140mmHg, 이완기 혈압 90mmHg 이상일 때 고혈압으로 진단합니다. 고혈압은 뇌졸중, 심부전, 심근경색등 합병증을 유발할 수 있기 때문에 생활습관 개선으로 조기 관리가 중요합니다.

테스트님의 혈압 분석결과는 "안심"입니다.

혈압에 영향을 미치는 NPR3, FGF5, ATP2B1, CYP17A1 유전자를 분석하였습니다.

테스트님은

NPR3유전자는 TT, FGF5유전자는 TT, ATP2B1유전자는 GA, CYP17A1유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 혈압은 **안심**수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
NPR3		C	TT
FGF5	세포 합성 및 대사에 관여하는 유전자	T	TT
ATP2B1	세포 내 칼슘 농도의 항상성을 유지하는데 필수적인 역할을 하는 유전자	G	G A
CYP17A1	골레스테롤과 스테로이드 합성을 조절하는 유전자	T	TT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 혈압에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 혈압과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 혈압 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 혈압 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

비만은 섭취하는 영양분에 비해 소비하는 에너지가 적어 여분의 에너지가 체지방 형태로 축적되는 것을 의미합니다. 불규칙한 식습관, 과다한 음식 섭취, 운동 부족, 내분비계통 질환, 유전적인 요인, 정신적 요인 등이 비만의 원인이 될 수 있습니다.

비만에 영향을 미치는 FTO, CLOCK 유전자를 분석하였습니다.

테스트님은

FTO유전자는 TT, CLOCK유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 비만은 **안심**수준으로 예상됩니다.

테스트님의 비만 분석결과는 **"안심"**입니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
FTO	열량을 지방으로 저장하는 유전자	A	TT
CLOCK	비만과 대사성 질환에 연관된 유전자	А	AA

🤳 주의사항

▶ 본 검사에서 제공하는 결과는 비만에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 비만과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 비만 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 비만 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

멀미는 불규칙한 움직임에 대한 신체의 반응으로 평형감각을 주관하는 전정기관과 시각 정보가 상반될 때 일어나며, 속이 메스껍고 어지러운 증상이 나타납니다. 편두통, 호르몬제의 복용, 실내 공기 환경, 유전적인 요인 등이 멀미에 대한 취약성을 증가시킬 수 있습니다.

멀미에 영향을 미치는 HMX3-GPR26 유전자를 분석하였습니다.

테스트님은

HMX3-GPR26유전자는 CA유전자형을 가지고 있습니다.

테스트님의 멀미 분석결과는 "보통"입니다.

테스트님의 유전자형을 분석한 결과 멀미는 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
HMX3-GPR26	멀미와 관련성이 보고된 유전자	А	СА
	-		

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 멀미에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 멀미과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 멀미 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 멀미 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

골질량은 칼슘과 인을 포함한 뼈의 절대적 무게를 의미하며, 골다공증과 골절 위험도를 예측하는 기준으로 사용됩니다. 성장기에 영양분 섭취, 운동, 환경요인 및유전적 요인들이 복합적으로 작용하면서 사춘기에서 30대 중반 시기 최대 골질량및 골밀도를 가지게 됩니다. 이후에는 점차 골소실이 진행되어 골질량과 골밀도는 감소하게 됩니다.

테스트님의 골질량
분석결과는 "주의"입니다.

골질량에 영향을 미치는 WNT4-ZBTB40, ZNF621-CTNNB1, MEPE-SPP1, COLEC10 유전자를 분석하였습니다.

테스트님은

WNT4-ZBTB40유전자는 GC, ZNF621-CTNNB1유전자는 TC, MEPE-SPP1유전자는 GG, COLEC10유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 골질량은 주의 수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
WNT4-ZBTB40	세포 발달 및 골밀도와 관련성이 보고된 유전자	G	GC
ZNF621-CTNNB1	세포 부착 및 유전자의 전사를 조절하는 역할로 골밀도와 관련성이 보고된 유전자	Т	TC
MEPE-SPP1	뼈 무기질화와 관련된 유전자	G	GG
COLEC10	골밀도와 관련성이 보고된 유전자	A	AA

🔟 주의사항

▶ 본 검사에서 제공하는 결과는 골질량에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 골질량과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 골질량 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 골질량 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

퇴행성 관절염증은 관절의 퇴화 또는 노화, 뼈에 손상이 일어나 염증과 통증을 동반하는 질환입니다. 노화, 체중 증가 및 비만, 과격한 운동을 지속하는 경우 등이 퇴행성 관절염의 주요 원인이 될 수 있습니다.

테스트님의 퇴행성 관절염증 감수성 분석결과는 "보통"입니다.

퇴행성 관절염증 감수성에 영향을 미치는 MIR572-RAB28, LTBP1, GLIS3, TGFA, CRADD 유전자를 분석하였습니다.

테스트님은

MIR572-RAB28유전자는 AA, LTBP1유전자는 AA, GLIS3유전자는 AC, TGFA유전자는 GG, CRADD유전자는 CT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 퇴행성 관절염증 감수성은 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
MIR572-RAB28	관절염증 감수성이 보고된 유전자	Α	AA
LTBP1	TGF-beta 기능과 연관되어 세포 분화 및 미세 섬유 형성에 관련된 유전자	A	AA
GLIS3	전사 조절인자로 세포 분화와 관련된 유전자	A	AC
TGFA	세포 증식 및 발달과 관련된 유전자	A	GG
CRADD	세포 사멸에 관련된 유전자	T	CT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 퇴행성 관절염증 감수성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 퇴행성 관절염증 감수성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 퇴행성 관절염증 감수성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 퇴행성 관절염증 감수성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

요산은 세포 대사의 최종 분해 산물로 신장을 통해 소변으로 배출되어야 합니다. 요산이 배출되지 못하고 체내에 축적이 되면 관절 부위에 염증과 통증을 유발하고 통풍 질환의 위험도를 증가시킬 수 있습니다.

요산치에 영향을 미치는 BCAS3, MPPED2-DCDC1 유전자를 분석하였습니다.

테스트님은

BCAS3유전자는 TT, MPPED2-DCDC1유전자는 TT유전자형을 가지고 있습니다.

테스트님의 요산치 분석결과는 "주의"입니다.

테스트님의 유전자형을 분석한 결과 요산치는 주의수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
BCAS3	혈관 생성에 관여하는 유전자	T	TT
MPPED2-DCDC1	혈중 요산치 농도 조절에 관련성이 보고된 유전자	Т	TT

🥛 주의사항

▶ 본 검사에서 제공하는 결과는 요산치에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 요산치과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 요산치 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 요산치 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

신체에서 근육, 수분, 무기질 등을 제외한 체지방이 차지하는 비율로, 체지방률이 높을수록 다양한 질환에 노출될 가능성이 증가합니다. 체지방이 많을수록 당뇨병, 고혈압, 고지혈증 등의 심혈관계 질환과 성인병 발병 위험성이 증가할 수 있습니다.

테스트님의 체지방률 분석결과는 "보통"입니다. 체지방률에 영향을 미치는 PLCE1, WSCD2, PEPD, IQCH 유전자를 분석하였습니다.

테스트님은

PLCE1유전자는 GC, WSCD2유전자는 GG, PEPD유전자는 TC, IQCH유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 체지방률은 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
PLCE1	세포 생존과 성장과 관련이 있는 유전자	G	GC
WSCD2	체지방률과 관련성이 보고된 유전자	G	GG
PEPD	콜라겐 대사와 관련된 유전자	T	TC
IQCH	체지방률과 관련성이 보고된 유전자	G	AA

🔟 주의사항

▶ 본 검사에서 제공하는 결과는 체지방률에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 체지방률과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 체지방률 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 체지방률 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

복부비만은 복부의 내장에 지방이 과도하게 축적된 경우를 의미합니다. 복부비만을 진단할 때는 허리와 엉덩이의 비율(W/H 비)이 기준이 되며, 남성의 경우 W/H 비가 0.9 이상일 때, 여성의 경우는 0.8 이상일 때 복부비만으로 진단합니다. 특히 복부비만은 대사성 질환과 심혈관 질환의 발병 위험을 높일 수 있습니다.

테스트님의 복부비만(엉덩이 허리 비율) 분석결과는 "안심"입니다. 복부비만(엉덩이 허리 비율)에 영향을 미치는 VEGFA-MRPL14, SSPN-ITPR2, KCNJ2-CASC17 유전자를 분석하였습니다.

테스트님은

VEGFA-MRPL14유전자는 CA, SSPN-ITPR2유전자는 CC, KCNJ2-CASC17유전자는 GG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 복부비만(엉덩이 허리비율)은 **안심**수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
VEGFA-MRPL14	허리-엉덩이 비율 관련 유전자로 보고된 유전자	Α	CA
SSPN-ITPR2	근육 구성 요소 유전자	T	СС
KCNJ2-CASC17	근육 반응과 관련성이 있는 유전자	А	GG

🤳 주의사항

▶ 본 검사에서 제공하는 결과는 복부비만(엉덩이 허리 비율)에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 복부비만(엉덩이 허리 비율)과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 복부비만(엉덩이 허리 비율) 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 복부비만(엉덩이 허리 비율) 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

체중감량 및 유지를 위한 운동은 근육을 생성하고 지방의 축적 방지 및 지방 분해에 중요한 역할을 합니다. 그러나 동일한 운동량을 수행 했더라도 근육량과 유전형에 따라서 지방 연소의 효율과 체중감량효과는 달라질 수 있습니다.

테스트님의 운동에 의한 체중감량 효과 분석결과는 "보통"입니다.

운동에 의한 체중감량 효과에 영향을 미치는 CYYR1, DCC-MBD2, CRTC3, PRRX2 유전자를 분석하였습니다.

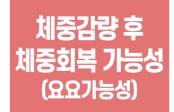
테스트님은

CYYR1유전자는 TT, DCC-MBD2유전자는 TC, CRTC3유전자는 GG, PRRX2유전자는 TC유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 운동에 의한 체중감량 효과는 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
CYYR1	운동 반응 관련 유전자		TT
DCC-MBD2	근육 움직임의 신호 전달 관련 유전자	С	TC
CRTC3	- - 운동 반응 관련 유전자	G	GG
PRRX2	· 눈충 인공 산인 휴산자	T	TC


🤳 주의사항

▶ 본 검사에서 제공하는 결과는 운동에 의한 체중감량 효과에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 운동에 의한 체중감량 효과과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 운동에 의한 체중감량 효과 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 운동에 의한 체중감량 효과 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

요요현상은 다이어트로 감소한 체중이 원래대로 되돌아오는 현상을 의미하며, 체내 근육량 감소와 기초대사량 감소가 원인이 될 수 있습니다. 무리한 절식으로 체중 감량과 회복이 반복되면 기초대사량이 감소하여 섭취한 체내에 빠르게 축적하므로 체중이 오히려 증가하게 됩니다.

체중감량 후 체중회복 가능성(요요 가능성)에 영향을 미치는 FBLN5, LAMB1 유전자를 분석하였습니다.

테스트님은

FBLN5유전자는 GG, LAMB1유전자는 GG LAMB1유전자형을 가지고 있습니다.

테스트님의 체중감량 후 체중회복 가능성(요요 가능성)

분석결과는 "안심"입니다.

테스트님의 유전자형을 분석한 결과 체중감량 후 체중회복 가능성(요요 가능성)은 **안심**수준으로 예상됩니다.

🤰 유전자형

유전자	역할	영향인자	나의 유전형
FBLN5	체내 엘라스틴 형성과 관련된 유전자	A	GG
LAMB1	세포 외 기질 성분과의 상호 작용에 관여하는 유전자	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 체중감량 후 체중회복 가능성(요요 가능성)에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 체중감량 후 체중회복 가능성(요요 가능성)과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 체중감량 후 체중회복 가능성(요요 가능성) 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 체중감량 후 체중회복 가능성(요요 가능성) 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

카페인은 중추신경계에 작용하여 각성효과, 피로도 감소, 집중력 향상에 효과가 있습니다. 카페인의 대사 효소의 활성도와 분해능력은 개인마다 다르며, 체내 잔 류하는 대사산물에 따라 부작용이 나타날 수도 있습니다. 카페인 대사 및 분해능 력에 따라 섭취량 조절이 필요합니다.

테스트님의 카페인 대사 분석결과는 "안심"입니다. 카페인 대사에 영향을 미치는 CYP1A2, AGR3-AHR 유전자를 분석하였습니다.

테스트님은

CYP1A2유전자는 AA, AGR3-AHR유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 카페인 대사는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
CYP1A2	섭취한 약물을 체내에서 분해하는 효소의 일종으로 다양한 약물대사에 관여	C	AA
AGR3-AHR	CYP1A2 유전자의 발현을 증가시킴으로써 카페인의 대사를 조절하는 유전자	Т	TT

주의사항

▶ 본 검사에서 제공하는 결과는 카페인 대사에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 카페인 대사과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 카페인 대사 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 카페인 대사 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

알코올 대사는 알코올 분해 시 생성되는 아세트알데히드를 원활하게 분해하는 것으로 개인의 알코올 대사 효소의 활성도에 따라 달라집니다. 알코올 대사 효율은음주량, 나이, 성별과 같은 환경적인 요인과 알코올 분해 효소에 관련한 유전적인요인에 영향을 받을 수 있습니다.

테스트님의 알코올 대사 분석결과는 "안심"입니다. 알코올 대사에 영향을 미치는 ALDH2, HECTD4, ADH1B 유전자를 분석하였습니다.

테스트님은

ALDH2유전자는 GG, CC, HECTD4유전자는 GG, ADH1B유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 알코올 대사는 **안심**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
ALDII3	알코올 분해 효소를 생성, 알코올에 의한 홍조 및 숙취와 연관된 유전자	А	GG
ALDH2	물고을 눈에 묘오를 성성, 물고물에 의한 동소 및 국위와 연한된 유인자	С	СС
HECTD4	유비퀴논 관련 효소 생산 및 알코올 대사 관련 유전자	G	GG
ADH1B	알코올 분해 효소를 합성하는데 관여하는 유전자	Т	TT

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 알코올 대사에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 알코올 대사과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 알코올 대사 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 알코올 대사 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

알코올 의존성은 알코올을 장기간 섭취하여 관련 문제 행동이 빈번하게 일어나고, 알코올 금단증상 또는 내성의 신체적 증상이 나타나는 상태를 의미합니다. 알코올 의존성 발생 위험도는 유전학적인 요인에 영향을 받을 수 있습니다.

테스트님의 알코올 의존성 분석결과는 "보통"입니다. 알코올 의존성에 영향을 미치는 PKNOX2, ESR1, SERINC2 유전자를 분석하였습니다.

테스트님은

PKNOX2유전자는 TT, ESR1유전자는 CT, SERINC2유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 알코올 의존성은 보통수준으로 예상됩니다.

💆 유전자형

유전자	역할	영향인자	나의 유전형
PKNOX2	으로 중독 형성 단계에 작용하는 유전자	T	TT
ESR1	에스트로겐 유사 물질 민감성을 파악하는데 관여하는 유전자	Т	СТ
SERINC2	금단현상 및 알코올 의존성과 관련성이 보고된 유전자	С	TT

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 알코올 의존성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 알코올 의존성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 알코올 의존성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 알코올 의존성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

알코올 분해 시 생성되는 아세트알데히드가 체내에 축적됨에 따라 나타나는 안면 홍조 반응입니다. 알코올 분해 효소의 양과 대사 능력은 개인마다 다르며, 유전자 활성 정도에 따라 분해 효소의 양이 결정됩니다.

알코올 홍조에 영향을 미치는 IDO1-ZMAT4, MOB2-DUSP8 유전자를 분석하였습니다.

테스트님은

IDO1-ZMAT4유전자는 TC, MOB2-DUSP8유전자는 CA, AG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 알코올 홍조는 **안심**수준으로 예상됩니다.

테스트님의 알코올 홍조 분석결과는 **"안심"**입니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
IDO1-ZMAT4		Т	TC
MOB2-DUSP8	알코올 반응과 관련성이 보고된 유전자	С	CA
		Α	A G

주의사항

▶ 본 검사에서 제공하는 결과는 알코올 홍조에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 알코올 홍조과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 알코올 홍조 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 알코올 홍조 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

포도의 품종, 생산지역, 수확 시기, 제조 과정, 숙성기간 등에 따라 와인의 맛과 향, 색상은 다양합니다. 후각과 미각 수용체에 의해 와인에 대한 민감도가 결정되고, 선호하는 와인이 달라질 수 있습니다.

테스트님의 와인 선호도

분석결과는 "화이트 와인"입니다.

와인 선호도에 영향을 미치는 ARL15, MROH5-TSNARE1 유전자를 분석하였습니다.

테스트님은

ARL15유전자는 CC, MROH5-TSNARE1유전자는 CG유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 와인 선호도는 호아 트 **와인**수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
ARL15	· 와인 선호도 연관된 유전자	С	СС
MROH5-TSNARE1	· 파진 선모도 현원된 규선사 	С	CG

주의사항

▶ 본 검사에서 제공하는 결과는 와인 선호도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 와인 선호도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 와인 선호도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 와인 선호도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

담배의 대표적인 독성물질인 니코틴은 대사 효소의 활성도에 따라 대사속도가 달라집니다. 대사 속도가 빠르면 체내에 니코틴이 빨리 소실되어 흡연 욕구가 증가하기도 하고, 발암물질 생성을 촉진하기도 합니다. 즉, 니코틴 대사 속도와 효율에따라 흡연의 유해성에 차이가 생길 수 있습니다.

니코틴 대사에 영향을 미치는 CYP2A6 유전자를 분석하였습니다.

테스트님은

CYP2A6유전자는 TC, TT유전자형을 가지고 있습니다.

테스트님의 니코틴 대사 분석결과는 "주의"입니다.

테스트님의 유전자형을 분석한 결과 니코틴 대사는 주의수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
CYP2A6	물질대사에 관여하는 효소를 생성하며 니코틴 대사와 유의한 연관성이 보고된	С	TC
	유전자 	T	TT
	 		

주의사항

▶ 본 검사에서 제공하는 결과는 니코틴 대사에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 니코틴 대사과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 니코틴 대사 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 니코틴 대사 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

니코틴은 중독성이 강한 물질로 분류되어 있으며, 흡연 기간과 흡연량, 니코틴 대사 속도에 따라서 의존성이 달라집니다. 니코틴의 대사 속도가 빨라 체내에서 빠르게 소실되면 흡연 욕구가 증가하면서 니코틴 의존성도 함께 높아집니다.

테스트님의 니코틴 의존성 분석결과는 "낮음"입니다.

니코틴 의존성에 영향을 미치는 ICE1-UBE2QL1, QSOX2-GPSM1, FERD3L-TWISTNB, GNAL 유전자를 분석하였습니다.

테스트님은

ICE1-UBE2QL1유전자는 GG, QSOX2-GPSM1유전자는 CC, FERD3L-TWISTNB유전자는 CC, GNAL유전자는 GA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 니코틴 의존성은 낮음수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
ICE1-UBE2QL1	니코틴 의존 관련성이 보고된 유전자	G	GG
QSOX2-GPSM1	약물 중독성과 관련성이 있는 유전자	Т	СС
FERD3L-TWISTNB		А	СС
GNAL	· 니코틴 의존 관련성이 보고된 유전자 	А	GA

주의사항

▶ 본 검사에서 제공하는 결과는 니코틴 의존성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 니코틴 의존성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 니코틴 의존성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 니코틴 의존성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

카페인은 집중력 향상, 각성 효과, 피로감 해소 등에 도움을 줄 수 있습니다. 이러한 효과를 위해 점차 많은 카페인을 섭취하게 되는 내성 또는 카페인을 섭취하지 않았을 때 두통이나 기면증 같은 금단 증상이 나타난다면 카페인 의존도가 매우 높은 것을 의미합니다.

테스트님의 카페인 의존성 분석결과는 "보통"입니다. 카페인 의존성에 영향을 미치는 CPLX3-ULK3, CAB39L 유전자를 분석하였습니다.

테스트님은

CPLX3-ULK3유전자는 AA, CAB39L유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 카페인 의존성은 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
CPLX3-ULK3	크레이 조도가 과려다 오저지	С	AA
CAB39L	- 카페인 중독과 관련된 유전자 -	А	AA

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 카페인 의존성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 카페인 의존성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 카페인 의존성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 카페인 의존성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

불면증은 심리적 스트레스, 수면 습관, 유전적인 요인 등으로 수면의 양이나 질에 문제가 생기는 수면장애입니다. 불면증이 지속되면 피로감이 증가하고, 주간 졸음, 의욕 상실 등의 원인이 되면서 삶의 질이 떨어질 수 있습니다.

불면증에 영향을 미치는 SMAD5 유전자를 분석하였습니다.

테스트님은

SMAD5유전자는 GT유전자형을 가지고 있습니다.

테스트님의 불면증 분석결과는 "보통"입니다.

테스트님의 유전자형을 분석한 결과 불면증은 보통수준으로 예상됩니다.

💆 유전자형

유전자	역할	영향인자	나의 유전형
SMAD5	전사 조절 및 불면증 관련 유전자	Т	GT
	·		

🪺 주의사항

▶ 본 검사에서 제공하는 결과는 불면증에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 불면증과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 불면증 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 불면증 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

수면 습관/시간은 수면의 질에 영향을 주는 중요한 요소로 부적절한 수면습관과 짧은 수면시간은 삶의 질을 크게 감소시킬 수 있습니다. 적정 수면시간은 개인마다 다르며, 평소 수면 습관, 생활 습관, 수면 환경, 유전적인 요인 등에 따라 달라질수 있습니다.

수면습관/시간에 영향을 미치는 RBFOX1, CA10-KIF2B 유전자를 분석하였습니다.

테스트님은

RBFOX1유전자는 CA, CA10-KIF2B유전자는 TT유전자형을 가지고 있습니다.

테스트님의 수면습관/시간 분석결과는 "긴 수면"입니다.

테스트님의 유전자형을 분석한 결과 수면습관/시간은 **긴** 수면수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
RBFOX1	· · 수면 시간과 습관과 관련성이 보고된 유전자	А	CA
CA10-KIF2B	" 구선 시신과 급선과 선언경이 모고선 휴신사 프로그램 그 프로그램	Т	TT

🤳 주의사항

▶ 본 검사에서 제공하는 결과는 수면습관/시간에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 수면습관/시간과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 수면습관/시간 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 수면습관/시간 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

개인마다 가지고 있는 생체시계(생체 리듬)가 다르기 때문에 생산성을 높이는 활동 시간도 달라질 수 있습니다. 생체 리듬은 유전자의 영향에 따라 달라질 수 있으며, 자신에게 맞는 수면습관과 수면시간을 규칙적으로 유지하는 것이 중요합니다.

테스트님의 아침형, 저녁형 인간 분석결과는 "저 녁 형 인간"입니다.

아침형, 저녁형 인간에 영향을 미치는 VAMP3, FAM185A 유전자를 분석하였습니다.

테스트님은

VAMP3유전자는 AA, FAM185A유전자는 GA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 아침형, 저녁형 인간은 **저녁형 인간**수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
VAMP3	및 민감도 및 수면과 관련된 유전자	A	AA
FAM185A	생체리듬과 연관된 유전자	G	G A

주의사항

▶ 본 검사에서 제공하는 결과는 아침형, 저녁형 인간에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 아침형, 저녁형 인간과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 아침형, 저녁형 인간 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 아침형, 저녁형 인간 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

국제통증학회에서 통증은 '실질적인 또는 잠재적인 조직 손상이나 이러한 손상에 관련하여 표현되는 감각적이고 정서적인 불유쾌한 경험'으로 정의됩니다. 통증은 일반적인 환경에서 생물학적 기능을 수행하면서 외부 위험으로부터 우리의 몸을 보호합니다. 신경 또는 근골격 문제, 정서적 경험, 유전적 특성에 따라 개인마다 느끼는 통증의 정도는 달라질 수 있습니다.

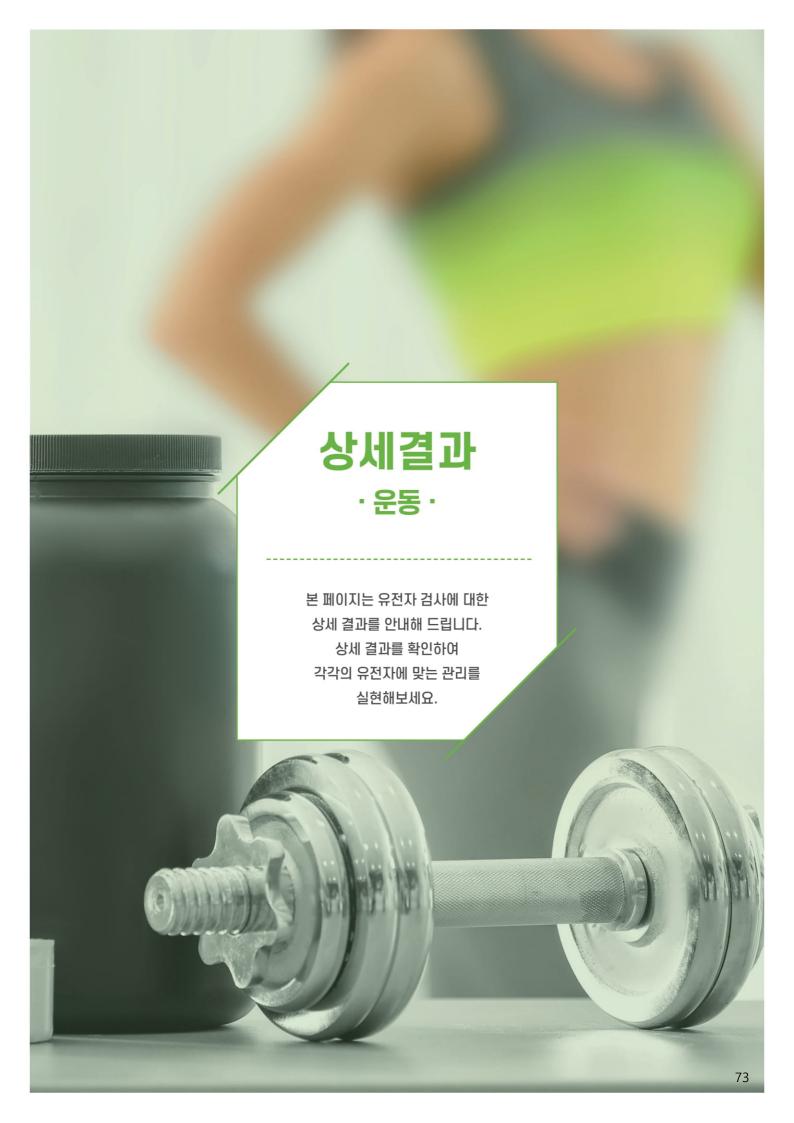
테스트님의 통증 민감성 분석결과는 "보통"입니다. 통증 민감성에 영향을 미치는 COMT, OPRM1 유전자를 분석하였습니다.

테스트님은

COMT유전자는 CC, OPRM1유전자는 AG OPRM1유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 통증 민감성은 보통수준으로 예상됩니다.

🙀 유전자형


유전자	역할	영향인자	나의 유전형
COMT	통증 조절에 관여하는 유전자	С	СС
OPRM1	통증 완화와 관련된 유전자	G	AG

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 통증 민감성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 통증 민감성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 통증 민감성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 통증 민감성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

근력은 근육이 한 번에 발휘할 수 있는 최대의 힘 또는 외부에서 가해지는 힘에 대한 저항 능력을 의미합니다. 운동의 효율성은 근력 운동 적합성에 따라 달라질 수 있으며, 근력과 근지구력이 높을수록 근력 운동에 적합합니다.

근력 운동 적합성에 영향을 미치는 ACTN3, AGT 유전자를 분석하였습니다.

테스트님은

ACTN3유전자는 CC, AGT유전자는 AG유전자형을 가지고 있습니다.

테스트님의 근력 운동 적합성 분석결과는 "높음"입니다.

테스트님의 유전자형을 분석한 결과 근력 운동 적합성은 높음수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
ACTN3		T	СС
AGT	체내의 혈압, 체액 및 전해질의 항상성 유지에 관여하는 유전자	А	AG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 근력 운동 적합성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 근력 운동 적합성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 근력 운동 적합성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 근력 운동 적합성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

운동에 필요한 에너지를 유산소 호흡(유기호흡)을 통해 얻는 운동 방식으로, 유산소 운동 능력은 최대 산소 섭취량으로 평가 할 수 있습니다. 최대 산소 섭취량은 유산소 운동에 필요한 최대심박출량과 산소 운반 능력 등을 평가하는 지표로 이는 유전적인 요인, 근육대사, 운동 능력 등 다양한 요인에 의해 달라질 수 있습니다.

VEGFA, KDR 유전자를 분석하였습니다.

유산소 운동 적합성에 영향을 미치는 NOS3, PPARGC1A,

테스트님은

NOS3유전자는 TT, PPARGC1A유전자는 CT, VEGFA유전자는 CG, KDR유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 유산소 운동 적합성은 낮음수준으로 예상됩니다.

테스트님의 유산소 운동 적합성 분석결과는 "낮음"입니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
NOS3	심혈관 시스템을 보호하는 기능과 관련있는 유전자	T	TT
PPARGC1A	근육 내 에너지 생산성과 관련된 유전자로 골격근 내 에너지 공급을 조절하는 기능	С	СТ
VEGFA	혈관 신생 인자의 발현에 관련	G	CG
KDR	혈관 신생 및 발달에 필수적인 역할	А	TT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 유산소 운동 적합성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 유산소 운동 적합성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 유산소 운동 적합성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 유산소 운동 적합성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

지구력은 피로를 최소화하여 일정 시간 동안 지속적인 힘을 발휘하는 능력으로, 지구력이 좋을수록 장시간 지속하는 운동을 견디는 심폐지구력이 강함을 의미합 니다. 또, 근수축을 지속할 수 있도록 에너지를 계속 공급해주는 대사 능력이 중요 하며, 산소 운반 능력에 도움이 되는 지근섬유 발달에 따라서 능력이 달라질 수 있습니다.

테스트님의 지구력 운동 적합성 분석결과는 "보통"입니다. 지구력 운동 적합성에 영향을 미치는 VEGFA, PPARD 유전자를 분석하였습니다.

테스트님은

VEGFA유전자는 CG, PPARD유전자는 TT유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 지구력 운동 적합성은 보통수준으로 예상됩니다.

🔰 유전자형

유전자	역할	영향인자	나의 유전형
VEGFA	혈관 생성 및 세포 성장-증식 조절과 관련있는 유전자	G	CG
PPARD	심혈관계 순환을 조절하는 전사 조절인자	Т	TT

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 지구력 운동 적합성에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 지구력 운동 적합성과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 지구력 운동 적합성 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 지구력 운동 적합성 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

근육은 몸을 지탱하는 기둥으로 신체의 움직임과 조작을 담당하여 자세를 유지하고, 관절을 연장해 줍니다. 또, 혈액 순환의 펌프 역할을 하며, 심장과 내장기관을 움직여 생명을 유지할 수 있도록 합니다. 근육은 회복과 재강화를 거치면서 더 발 달하게 되며, 근육량과 근력을 증가시킵니다.

근육발달 능력에 영향을 미치는 AGT, TRHR, AGTR2 유전자를 분석하였습니다.

테스트님은

AGT유전자는 AG, TRHR유전자는 AC, AGTR2유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 근육발달 능력은 낮음수준으로 예상됩니다.

테스트님의 근육발달 능력 분석결과는 "낮음"입니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
AGT	혈압, 체액 항상성 유지에 관련된 유전자	A	A G
TRHR	맥압 및 근력 감소와 연관성이 있는 유전자	А	AC
AGTR2	심혈관의 혈압과 혈액량을 조절하는 유전자	А	AA

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 근육발달 능력에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 근육발달 능력과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 근육발달 능력 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 근육발달 능력 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

단거리 질주 또는 스프린트는 짧은 거리를 전속력으로 이동하는 경기로 짧은 시간에 최고 속력을 최대한으로 발휘하게 됩니다. 근력, 민첩성, 근지구력과 순발력이 뛰어나고, 순간적으로 폭발적인 힘을 내는 근육이 발달할수록 단거리 질주 능력이 향상됩니다.

테스트님의 단거리 질주 능력 분석결과는 "보통"입니다. 단거리 질주 능력에 영향을 미치는 SLC16A1, AGTR2 유전자를 분석하였습니다.

테스트님은

SLC16A1유전자는 TT, AGTR2유전자는 AA유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 단거리 질주 능력은 보통수준으로 예상됩니다.

🔰 유전자형

유전자	역할	영향인자	나의 유전형
SLC16A1	적혈구 젖산 수송과 관련 있는 유전자	A	TT
AGTR2	심혈관의 혈압과 혈액량을 조절하는데 관여하는 유전자	А	AA

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 단거리 질주 능력에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 단거리 질주 능력과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 단거리 질주 능력 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 단거리 질주 능력 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

발목은 운동 중 흔하게 부상을 입을 수 있는 부위로 다양한 외부적 요인으로 인대 손상에 따른 염좌나 발목관절 염증, 골절, 아킬레스건 파열 등이 발생 할 수 있습 니다. 손상 초기에 적절한 치료가 이루어지지 않으면 발목 관절의 연골이 손상될 가능성이 있습니다.

발목 부상 위험도에 영향을 미치는 ACTN3 유전자를 분석하였습니다.

테스트님은

ACTN3유전자는 CC유전자형을 가지고 있습니다.

테스트님의 발목 부상 위험도 분석결과는 "낮음"입니다.

테스트님의 유전자형을 분석한 결과 발목 부상 위험도는 낮음수준으로 예상됩니다.

🔰 유전자형

유전자	역할	영향인자	나의 유전형
ACTN3	근육 수축과 이완을 포함한 근육 형성에 관여하는 유전자	Т	СС

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 발목 부상 위험도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 발목 부상 위험도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 발목 부상 위험도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 발목 부상 위험도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

손아귀 힘인 악력은 쉽고 빠르게 근육의 강도를 측정할 수 있어서 신체적 기능을 반영하는 평가 지표가 될 수 있습니다. 악력과 손목뼈 골밀도, 신체 균형감, 혈압계 질환 발생 위험성과의 상관관계에 관한 많은 연구 결과가 보고되었습니다.

악력에 영향을 미치는 ATXN2L, TGFA 유전자를 분석하였습니다.

테스트님은

ATXN2L유전자는 TC, TGFA유전자는 GG유전자형을 가지고 있습니다.

테스트님의 악력 분석결과는 "높음"입니다.

테스트님의 유전자형을 분석한 결과 악력은 높음수준으로 예상됩니다.

💢 유전자형

유전자	역할	영향인자	나의 유전형
ATXN2L	악력 연관 유전자	С	TC
TGFA	세포 증식 관련 유전자	А	GG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 악력에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 악력과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 악력 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 악력 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

격렬한 운동 및 신체 활동 후에는 심장 박동이 빨라지고, 근육통, 피로감 등을 느끼게 됩니다. 운동 후, 근육 및 조직의 회복에 드는 시간은 개인의 회복 능력에 따라 달라질 수 있습니다.

테스트님의 운동 후 회복 능력 분석결과는 "낮음"입니다.

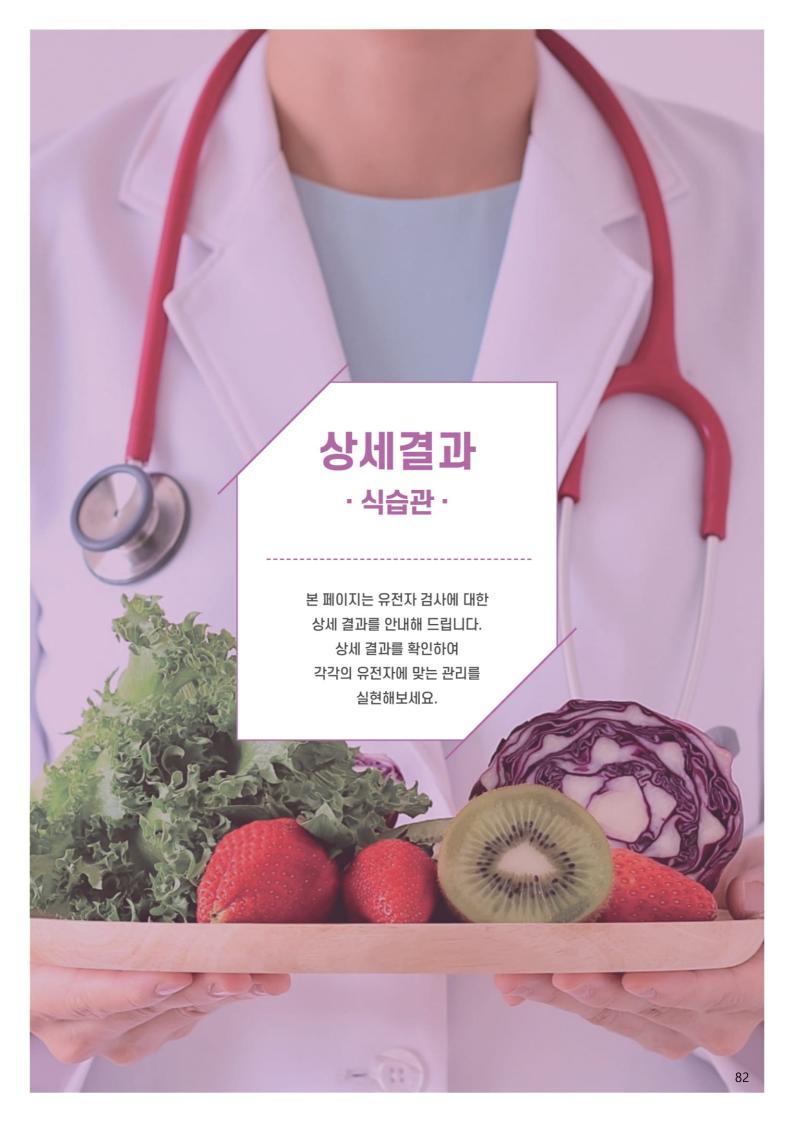
운동 후 회복 능력에 영향을 미치는 GDF5, IL6R 유전자를 분석하였습니다.

테스트님은

GDF5유전자는 AA, IL6R유전자는 CC IL6R유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 운동 후 회복 능력은 낮음수준으로 예상됩니다.

🔰 유전자형


유전자	역할	영향인자	나의 유전형
GDF5	m, 연골형성 및 연골조직 분화 조절 과정에 관여하며, 운동 후 회복 능력에 관련됨	Α	AA
IL6R	운동 후 회복 능력에 관련있는 유전자	С	СС

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 운동 후 회복 능력에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 운동 후 회복 능력과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 운동 후 회복 능력 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 운동 후 회복 능력 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

식욕은 더 많은 음식이나 더 많은 열량을 섭취하려는 욕구입니다. 식욕 조절 능력이 떨어지면 과식과 폭식, 비만의 원인이 될 수 있습니다. 불필요한 식욕을 느끼지 않도록 규칙적인 식생활습관과 꾸준한 관리가 필요합니다.

식욕에 영향을 미치는 ANKK1 유전자를 분석하였습니다.

테스트님은

ANKK1유전자는 GG유전자형을 가지고 있습니다.

테스트님의 식욕 분석결과는 **"보통"**입니다.

테스트님의 유전자형을 분석한 결과 식욕은 보통수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
ANKK1	도파민 분비를 조절하는 유전자	G	GG

🧾 주의사항

▶ 본 검사에서 제공하는 결과는 식욕에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 식욕과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 식욕 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 식욕 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

음식 섭취를 통해 배가 부른 만족감인 포만감을 느끼게 되면 음식 섭취를 절제하게 됩니다. 단순히 식사의 양뿐만 아니라 호르몬 조절에 따라 나타나는 감정이며, 포만감을 조절하는 '렙틴'호르몬의 분비로 식욕을 억제하고 체지방을 조절하게 됩니다.

포만감에 영향을 미치는 FTO 유전자를 분석하였습니다.

테스트님은

FTO유전자는 TT유전자형을 가지고 있습니다.

테스트님의 포만감 분석결과는 "낮음"입니다.

테스트님의 유전자형을 분석한 결과 포만감은 낮음수준으로 예상됩니다.

💆 유전자형

유전자	역할	영향인자	나의 유전형
FTO	식욕을 조절하는 호르몬인 그렐린과 렙틴 호르몬에 관여하는 유전자	Т	TT

🧻 주의사항

▶ 본 검사에서 제공하는 결과는 포만감에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 포만감과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 포만감 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 포만감 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

미각 수용체에 의해 단맛 민감도가 결정되며, 민감도가 낮을수록 더 강한 단맛을 찾게 되는 경향이 있습니다. 단맛 민감도가 낮을수록 설탕, 아스파탐 등이 다량 함 유된 식품을 섭취할 가능성이 커져 체중 증가 및 비만으로 이어질 가능성이 높습 니다.

단맛 민감도에 영향을 미치는 TAS1R3 유전자를 분석하였습니다.

테스트님은

TAS1R3유전자는 CC유전자형을 가지고 있습니다.

테스트님의 단맛 민감도 분석결과는 "높음"입니다.

테스트님의 유전자형을 분석한 결과 단맛 민감도는 높음수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
TAS1R3	탄수화물 단맛 수용체를 인코딩하는 유전자	Т	СС

주의사항

▶ 본 검사에서 제공하는 결과는 단맛 민감도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 단맛 민감도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 단맛 민감도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 단맛 민감도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

미각 수용체에 의해 쓴맛 민감도가 결정되며, 개인의 감수성에 따라 민감도 차이는 있습니다. 쓴맛 민감도에 따라 선호하는 음식의 취향이 달라지고, 섭취하는 음식에 따라 식습관도 변화될 수 있습니다.

쓴맛 민감도에 영향을 미치는 TAS2R38 유전자를 분석하였습니다.

테스트님은

TAS2R38유전자는 GA, CG유전자형을 가지고 있습니다.

테스트님의 쓴맛 민감도 분석결과는 "높음"입니다.

테스트님의 유전자형을 분석한 결과 쓴맛 민감도는 높음수준으로 예상됩니다.

🙀 유전자형

유전자	역할	영향인자	나의 유전형
TAS2R38	는 맛 및 음식 섭취에 대한 개별 민감도의 변화와 관련된 유전자	А	G A
TASZKSO	는 첫 꽃 음식 합위에 대한 개를 한참도의 한화되 한한된 규칙자	С	CG

🚺 주의사항

▶ 본 검사에서 제공하는 결과는 쓴맛 민감도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 쓴맛 민감도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 쓴맛 민감도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 쓴맛 민감도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

짠맛 민감도는 짠맛을 감지하는 능력으로 미각 수용체에 의해 짠맛 민감도가 결정 됩니다. 짠맛 민감도가 낮을수록 나트륨을 과다 섭취하게 될 가능성이 높기 때문에 체중증가, 비만, 고혈압과 같은 질환에 노출되기 쉽습니다.

짠맛 민감도에 영향을 미치는 SCNN1B, TRPV1 유전자를 분석하였습니다.

테스트님은

SCNN1B유전자는 TT, TRPV1유전자는 TC유전자형을 가지고 있습니다.

테스트님의 유전자형을 분석한 결과 짠맛 민감도는 **낮음**수준으로 예상됩니다.

테스트님의 짠맛 민감도 분석결과는 **"낮음"**입니다.

💆 유전자형

유전자	역할	영향인자	나의 유전형
SCNN1B	나트륨 흡수 조절과 관련하여 나트륨 이온을 통과시켜 짠맛을 감지하는 이온 통로	Α	TT
TRPV1	다양한 자극에 의한 미각 감지와 관련된 유전자	С	TC

🧵 주의사항

▶ 본 검사에서 제공하는 결과는 짠맛 민감도에 영향을 주는 환경 및 생활습관 등의 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

또한 짠맛 민감도과 관계가 있는 모든 유전자를 분석한 것은 아닙니다.

- ▶ 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 짠맛 민감도 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 짠맛 민감도 차이가 발생하지 않는다는 의미는 아닙니다.
- ▶ 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다. 의학적 소견이 필요한 경우 의사와 상담하시기 바랍니다

검사항목	유전자명	유전자 기능	나의 결과
	0643	멜라닌 색소 전구체인 티로신의 운반단백질에 관여하며, 유전자 변이 시	СС
색소침착	OCA2	멜라닌 색소 수송을 촉진하여 피부의 색소 침착이 증가될 수 있습니다.	СС
	MC1R	멜라닌 세포 자극 호르몬 수용체 유전자로 피부의 색소 침착에 연관되어 있습니다.	GG
	WDR1-ZNF518B	액틴필라멘트 분해 및 세포 이동과 관련 있는 유전자입니다.	GG
	DEF8	세포 속 노폐물을 제거하는 리소좀 형성에 관여하며 피부 노화를 촉진시키는 것과 관련되어 있습니다.	TT
피브	SLC36A3-SLC36A2	멜라닌 합성과 관련된 유전자입니다.	TT
피부노화	HDAC4		TT
	AGER		AA
	AGEK	단백질이 당분과 결합해 피부 탄력을 감소시킬 수 있습니다.	СТ
남성형 탈모	chr20p11	남성형 탈모의 원인인 디하이드로테스토스테론의 합성에 관여하여 탈모의 발생을 조절할 수 있습니다.	GG
			СТ
모발굵기	EDAR	모낭 세포의 성장을 촉진하여 모발의 상태를 결정하는 유전자로 모발 굵기와 연관성이 있습니다.	GG
	BNC2	피부색에 관여하며 특정 변이는 기미, 주근깨와 같은 색소침착 발생을 유발할 수 있습니다.	TC
키미 /ᄌ ᄀ 께	EMX2OS-RAB11FIP2	GWAS 연구에서 색소 침착과 관련성이 보고된 유전자입니다.	TC
기미/주근깨	AKAP1-MSI2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CA
	PPARGC1B		СТ
	PCNX3	CMAC 여구에나 모나 바다가 취임 취사 관객사이 보고를 즐겁지입니다	TT
시드크 HLIII	SEMA4B	— GWAS 연구에서 모낭 발달과 형태 형성 관련성이 보고된 유전자입니다.	AG
여드름 발생	TGFB2-LYPLAL1	작질 및 피지 생성에 관련된 유전자입니다.	GA
	LYPLAL1-SLC30A10	GWAS 연구에서 모낭 발달과 형태 형성 관련성이 보고된 유전자입니다.	СТ
피브 여즈	FAM72C	GWAS 연구에서 피부 염증 발생 관련성이 있는 것으로 보고되었습니다.	GT
피부 염증	RNF145-UBLCP1	GWAS 연구에서 피부 염증 발생 관련성 있는 것으로 보고되었습니다.	TT
태양 노출 후	SLC45A2	멜라닌 합성 과정에 관련된 유전자입니다.	TT
태닝반응	PPARGC1B	에너지 소비 조절과 연관되어 있습니다.	СТ
	_		

검사항목	유전자명	유전자 기능	나의 결과
태양 노출 후	GRM5		AG
태닝반응	PRDM15	세포 운명을 조절하는 데 사용되는 전사 조절에 관련됩니다.	AA
	TMEM270-ELN	조직 탄성과 관련된 유전자입니다.	TC
튼살/각질	HMCN1	튼 살과 관련되어 있습니다.	GG
	ACOXL	대사와 관련되어 있습니다.	AC
원형 탈모	IL2-IL21	면역세포 성장 촉진 및 면역 반응과 연관된 유전자로 영향인자 보유 시 탈모의 위험이 증가할 수 있습니다.	GC
편앙 골포	IL13	면역 반응과 연관된 유전자입니다.	AA
	IL2RA	원형 탈모의 원인인 면역 반응과 관련된 유전자입니다.	TT
새치	IRF4	모발 색상과 관련된 유전자입니다.	СС
			TC
비타미스노드	SLC23A1 신장에서 비타민을 재흡수 하 결정합니다.	신장에서 비타민을 재흡수 하는 기능을 담당하여 체내의 비타민C 농도를 결정합니다.	GA
비타민 C 농도			СС
	SLC23A2	비타민C의 흡수 및 전달하는 수송체와 관련된 유전자입니다.	GA
비타민 D 농도	GC	혈액 내 비타민D 대사물질의 수송에 관여하는 유전자로 비타민D 결합 단백질(DBP : Vitamin D-binding protein) 과의 결합력을 통해 혈중 비타민 D	TT
코엔자임Q10 농도	SWI5	세포의 핵 내의 DNA 대사 과정과 관련된 유전자입니다.	GG
마그네슘 농도	MUC1	골밀도 조절에 관여하여 골밀도 형성에 중요한 마그네슘 혈중 농도를 결정합니다.	TT
아연 농도	SLC30A3		GG
	KCTD17-TMPRSS6	체내 철분 균형과 관련 있는 유전자입니다.	СС
철 저장 및 농도			GG
결 시장 关 중도	TMPRSS6	체내 철분 대사의 주요 조절자인 헵시딘(Hepcidin) 유전자를 억제하여 혈중 철분 농도의 항상성을 유지합니다.	СС
			AA
	CLASP1		СС
칼륨 농도	PRDM8-FGF5		СС
	HOTTIP		GT

검사항목	유전자명	유전자 기능	나의 결과
칼륨 농도	TBX2		AA
	BCAS3	세포 골격 재구성 매개 및 미네랄 밀도와 연관된 유전자입니다.	TT
칼슘 농도	BCAS1-CYP24A1	비타민 D 대사 효소의 생성을 조절하여 혈중 칼슘 흡수 및 유지 기능에 작용합니다.	GG
	AGXT2	요독 대사와 관련된 유전자입니다.	СТ
아크게나 누드	DDAH1	요독 대사에 연관이 있는 산화질소를 조절하는 유전자입니다.	GG
아르기닌 농도	PTPRE-MGMT	아르기닌 농도 조절과 관련성이 있습니다.	TT
	NRX1-ASB3	미네랄 밀도와 연관된 유전자입니다.	GG
	FFAR1	인슐린 대사 조절과 관련된 유전자입니다.	AA
지방산 농도	FABP2	지방산 수송 기능을 통해 체내의 지방산 농도를 조절합니다.	СС
	ADIPOR2	지방산 산화 및 포도당 흡수와 관련성이 있습니다.	СТ
비타민 A 농도	PKD1L2	PKD1L2 유전자의 특정 변이는 비타민 A 전환 효소의 촉매 활성을 감소시켜 시력 유지에 연관된 레티놀 농도를 조절합니다.	TG
	PKD1L2-BCO1	양이온 채널 구성 및 비타민A 베타-카로틴 대사 관련 유전자로 혈중 비타민 A의 농도를 조절합니다.	CT GG
 비타민 B6 농도	NBPF3-ALPL	 비타민B6 대사 관련 호르몬인 NBPF3 합성을 조절하여 체내 비타민B6 농도의 감소와 관련됩니다.	
	ZPR1		GC
비타민 E 농도	CYP4F2		CC
	SCARB1		GG
비타민 K 농도	TMED7-CDO1	 단백질의 구성 성분인 아미노산 대사와 관련이 있는 유전자입니다.	GG
	CUBN	니타민B12 체내 흡수에 관여하는 유전자로 영향인자 보유 시 비타민B12 운반을 위한 수용체의 결합력 약화로 체내 흡수 능력이 감소됩니다.	GG
비타민 B12 농도	MUT	체내 다양한 아미노산 대사와 관련된 유전자입니다.	GG
	TM6SF2	혈중 타이로신 농도에 연관된 유전자입니다.	CC
타이로신 농도	TAT-MARVELD3	타이로신의 아미노산화와 연관되어 있는 유전자입니다.	AT
	REV3L	이온 수송 매개 및 DNA 손상 보호에 관련된 유전자로 특정 변이는 타이로신 농도를 감소시킵니다.	GG
베타인 농도	внмт2	베타인이 포함된 대사 과정을 조절하는 유전자로 영양인자 보유 시 베타인 대사 속도를 증가시켜 핼액 내 베타인 농도를 감소시킵니다.	AG

검사항목	유전자명	유전자 기능	나의 결과
	BHMT-JMY	베타인이 포함된 대사 과정을 조절하는 유전자입니다.	AC
베타인 농도	CPS1	단백질 분해 시 발생되는 요소 배출 및 순환에 관여하는 유전자로 간의 해독 기능을 돕는 베타인과 간접적인 연관성이 있습니다.	TT
	ВНМТ	메티오닌-호모시스테인 대사에 관여하는 유전자로 영향 인자 보유 시 메티오닌 대사 기능이 저하되고, 체내 셀레늄 농도가 감소됩니다.	СТ
셀레늄 농도	NEIL3-AGA	GWAS 연구를 통해 유럽 혈통에서 혈청 셀레늄 농도와 관련된 유전적 변이가 보고되었습니다.	CA
	SLC39A11	혈중 셀레늄 농도와 연관성이 있는 유전자입니다.	GG
	BCO1	베타-카로틴을 비타민 A로 전환하는 기능으로 GWAS 연구를 통해 루테인&지아잔틴 농도와 연관성이 보고되었습니다.	TT
루테인&지아잔틴 농도	PKD1L2-BCO1	GWAS 연구를 통해 루테인&지아잔틴 농도와 연관성이 보고되었습니다.	GG GG
	TRIB1-FAM84B	 지방 생성과 관련된 유전자입니다.	AG
		GWAS 연구에서 중성지방 농도와 관련성이 보고된 유전자입니다.	TC
	AQP9-LIPC		CC
ᄌᅿᅱᄔᅩᆮ	GCKR	포도당 대사 조절에 관여하며, 포도당을 간이나 췌장에 중성지방 형태로 저장 시키는데 관련이 있습니다.	TT
중성지방농도	TBL2	GWAS 연구에서 중성지방 농도와 관련성이 보고된 유전자입니다.	СС
	TRIB1	간의 지방 생성을 억제하는 유전자로 유전 변이 시, 간과 혈중에 중성지방이 증가될 수 있습니다.	AG
	ANGPTL3	혈중 중성지방을 세포로 흡수시켜 농도를 조절하는 역할을 하며 유전자 변이 시 혈중 중성지방에 의해 혈관에 지방이 쌓일 수 있습니다.	GT
	MLXIPL	혈중 포도당에 반응하여 인슐린 분비를 촉진하고 근육이나 간세포에 중성지방 형태로 저장하게 하는 유전자입니다.	CC
	MC4R	식욕 억제를 통해 에너지 섭취의 균형을 조절하며, 영향인자 보유 시 식탐과 비만의 위험도가 증가될 수 있습니다.	GG
체질량지수	BDNF	식욕을 억제하는 렙틴 호르몬 생성에 관여하는 유전자로 유전자 변이에 따라 비만 위험도가 증가될 수 있습니다.	TT
세월 당시구	FTO		TT
			TT
	SNX13	HDL 콜레스테롤 대사와 관련이 있습니다.	TT
코레스테루	APOA5-APOA4	혈중 지방 수치와 연관성이 있습니다.	GA
콜레스테롤	CMIP	GWAS 연구에서 콜레스테롤과 연관성이 보고되었습니다.	CC
	HPR	HDL 콜레스테롤 대사와 관련이 있습니다.	GA
	_		

검사항목	유전자명	유전자 기능	나의 결과
	POLK	GWAS 연구에서 콜레스테롤과 연관성이 보고되었습니다.	тт
	MYRF	GWAS 연구에서 지방산 대사와 관련성이 보고되었습니다.	AA
콜레스테롤	СЕТР	HDL 콜레스테롤 대사에 관여하여, 섭취된 콜레스테롤을 에너지로 전환하는데 관련이 있습니다.	CC
	HMGCR	간에서 콜레스테롤을 합성하는 효소로, 콜레스테롤 대사에 직접적으로 영향을 미치기 때문에 특정 유전변이가 콜레스테롤 수치 이상을 야기할 수 있습니다.	CC
	KCNQ1	세포 이온 채널 관여하는 유전자입니다.	GA
	CDKAL1	 인슐린 생산 감소와 관련되어 혈당을 조절하는데 연관되어 있습니다.	TC
			GA
혈당	SLC30A8	인슐린 수송과 관련된 유전자로 혈중에 존재하는 포도당을 글리코겐으로 . 전환하는 과정에 영향을 주어 혈당을 조절합니다.	
	SIX3-SIX2	GWAS 연구에서 혈당과 관련성이 보고되었습니다.	GC
	CDKN2A/B		TT
	MTNR1B	MTNR1B 유전자가 혈당과 연관된 것으로 보고되고 있습니다.	СС
	DGKB-TMEM195	GWAS 연구에서 혈당과 관련성이 보고되었습니다.	СТ
	GCK	제내 포도당 대사 과정에서 첫 단계에 관여하며, 혈액 내 포도당 농도를 감지하여 탄수화물 대사를 조절하는 역할을 합니다.	GG
	NPR3	소변으로 나트륨 배출 및 혈압을 감소시키며, 나트륨 친화성 펩타이드 호르몬 수용체로써 이뇨작용과 혈압 및 골격 발달 조절에 관여합니다.	TT
	FGF5	세포 단계에서의 여러 생물학적 과정에 관여합니다.	TT
혈압	ATP2B1	세포 내 칼슘 농도의 항상성을 유지하는데 필수적인 역할을 하며, GWAS 연구에서 혈압과 연관성이 높다는 연구 결과가 있습니다.	GA
	CYP17A1	콜레스테롤과 스테로이드 합성을 조절하는 유전자로 나트륨 대사 및 호르몬 합성으로 혈압 상승에 영향을 미칩니다.	TT
	FTO	열량을 지방으로 저장하는 유전자로 특정 변이는 탄수화물을 과도하게 지방으로 변환시켜 체내에 축적시킬 수 있습니다.	TT
비만	CLOCK	비만과 대사성 질환에 연관되어 있습니다.	AA
멀미	HMX3-GPR26	GWAS 연구에서 멀미와 관련성이 보고된 유전자입니다.	CA
골질량	WNT4-ZBTB40	GWAS 연구에서 골밀도와 관련성이 보고되었습니다.	GC
	ZNF621-CTNNB1		TC
	MEPE-SPP1	뼈 무기질화와 관련된 유전자입니다.	GG

검사항목	유전자명	유전자 기능	나의 결과
골질량	COLEC10	GWAS 연구에서 골밀도와 관련성이 보고되었습니다.	AA
	MIR572-RAB28	관절염증 감수성이 보고된 유전자입니다.	AA
	LTBP1	TGF-beta 기능과 연관되어 세포 분화 및 미세 섬유 형성에 관련되어 있습니다.	AA
퇴행성 관절염증 감수성	GLIS3	전사 조절인자로 세포 분화와 관련되어 있습니다.	AC
	TGFA	세포 증식 및 발달과 관련된 유전자입니다.	GG
	CRADD	세포 사멸과 유의미한 관련성이 있습니다.	СТ
0.1141	BCAS3	혈관 생성에 중요한 역할을 수행하며 요산치에 대해 유의한 연관성 보고되었습니다.	TT
요산치	MPPED2-DCDC1	GWAS 연구에서 혈중 요산치에 유의한 연관성이 있는 것으로 보고되었습니다.	TT
체지방률	PLCE1	세포 생존과 성장과 관련이 있는 유전자입니다.	GC
	WSCD2		GG
	PEPD	골라겐 대사와 연관성이 있습니다.	TC
	IQCH	GWAS 연구에서 체지방률과 관련성이 보고된 유전자입니다.	AA
	VEGFA-MRPL14	GWAS 연구에서 허리-엉덩이 비율 관련 유전자로 보고된 유전자입니다.	CA
복부비만(엉덩이 허리 비율)	SSPN-ITPR2	근육 구성 요소 유전자입니다.	СС
	KCNJ2-CASC17	근육 반응과 관련성이 있습니다.	GG
	CYYR1	GWAS 연구에서 운동 반응 관련 유전자입니다.	TT
운동에 의한	DCC-MBD2	DCC-MBD2 유전자 근육 움직임의 신호 전달 관련 유전자입니다.	TC
체중감량 효과	CRTC3		GG
	PRRX2	─ GWAS 연구에서 운동 반응 관련 유전자입니다.	TC
체중감량 후	FBLN5	체내 엘라스틴 형성과 관련이 있습니다.	GG
체중회복 가능성 (요요 가능성)	LAMB1	세포 외 기질 성분과의 상호 작용에 관여합니다.	GG
크니데이 디티브	CYP1A2	섭취한 약물을 체내에서 분해하는 효소의 일종으로 다양한 약물대사에 관여합니다.	AA
카페인 대사	AGR3-AHR	CYP1A2 유전자의 발현을 증가시킴으로써 카페인의 대사를 조절합니다.	TT
알코올 대사	ALDH2	알코올 분해 효소를 생성하는 유전자로 아시아인에서의 알코올에 의한 홍조 및 숙취와 연관성 보고되고 있습니다.	GG

검사항목	유전자명	유전자 기능	나의 결과
	ALDH2	 알코올 분해 효소를 생성하는 유전자로 아시아인에서의 알코올에 의한 홍조 및 숙취와 연관성 보고되고 있습니다.	СС
알코올 대사	HECTD4	GWAS 연구 결과 유비퀴논 관련 효소를 생산하는 유전자로 알코올 대사 능력 감소에 대해 유의한 연관성이 보고되었습니다.	GG
	ADH1B	알코올 분해 효소를 합성하는데 관여합니다.	TT
	PKNOX2	알코올 중독 형성 단계에 작용하는 유전자로 알코올 중독과 관련이 있습니다.	TT
알코올 의존성	ESR1	에스트로겐 유사 물질 민감성을 파악하는데 관여하며 알코올 의존성과 관련성이 있는 것으로 보고된 유전자입니다.	CT
	SERINC2	GWAS 연구에서 금단현상 및 알코올 의존성과 관련성이 보고된 유전자입니다.	TT
	IDO1-ZMAT4		TC
알코올 홍조			CA
	MOB2-DUSP8	GWAS 연구에서 알코올 반응 관련성이 있는 것으로 보고되었습니다.	AG
와인 선호도	ARL15	─ GWAS 연구에서 와인 선호도 연관성이 보고되었습니다.	СС
	MROH5-TSNARE1		CG
	CVP2AC		TC
니코틴 대사	CYP2A6 생성하며 니코틴 대사와 유의한 연관성이 보고되었습니다.	TT	
	ICE1-UBE2QL1	GWAS 연구에서 니코틴 의존 관련성이 보고된 유전자입니다.	GG
	QSOX2-GPSM1	QSOX2-GPSM1 약물 중독성과 관련성이 있는 유전자입니다.	СС
니코틴 의존성	FERD3L-TWISTNB		СС
	GNAL	— GWAS 연구에서 니코틴 의존 관련성이 보고된 유전자입니다.	GA
	CPLX3-ULK3		AA
카페인 의존성	CAB39L	- 카페인 중독과 관련된 유전자입니다.	AA
불면증	SMAD5	GWAS 연구 결과 불면증 관련성이 보고된 유전자입니다.	GT
A = 4 A = 1 1 = 1	RBFOX1		CA
수면습관/시간	CA10-KIF2B	- GWAS 연구 결과에서 수면 시간과 습관과 관련성이 보고된 유전자입니다.	TT
	VAMP3	및 민감도 및 수면과 관련된 유전자입니다.	AA
아침형, 저녁형 인간	FAM185A		GA

검사항목	유전자명	유전자 기능	나의 결과
	COMT	통증 조절과 유의미한 관련성이 있습니다.	СС
통증 민감성	OPRM1	통증 완화와 관련된 유전자입니다.	AG
	ACTN3		СС
근력 운동 적합성	AGT	체내의 혈압, 체액 및 전해질의 항상성 유지에 관여하며, 영향인자 보유 시 근력 운동 적합성 감소와 관련이 있습니다.	AG
	NOS3	심혈관 시스템을 보호하는 기능과 관련이 있습니다.	TT
유산소 운동 적합성	PPARGC1A	근육 내 에너지 생산성과 관련된 유전자로 골격근 내 에너지 공급을 조절하고, 근육섬유 유형 변환에 관여합니다.	CT
ㅠ인포 판당 역합성	VEGFA	혈관 신생 인자의 발현에 관련이 있습니다.	CG
	KDR	혈관 신생 및 발달에 필수적인 역할을 합니다.	тт
	VEGFA	혈관 생성 및 세포 성장-증식 조절과 관련되어 있습니다.	CG
지구력 운동 적합성	PPARD	심혈관계 순환을 조절하는 전사 조절인자로 영향인자 보유 시 심혈관계 순환 기능과 지구력 운동 적합성 감소와 관련이 있습니다.	TT
	AGT	혈압, 체액 항상성 유지에 관련된 유전자입니다.	AG
근육발달 능력	TRHR	GWAS 연구에서 맥압 관련 유전자와 연관성이 알려져 있으며, 특정 변이는 근력 감소와 관련되어 있습니다.	AC
	AGTR2	심혈관의 혈압과 혈액량을 조절하는 유전자입니다.	AA
다기기 지조 노래	SLC16A1	- 적혈구 젖산 수송과 관련 있는 유전자로 보고되고 있습니다.	TT
단거리 질주 능력	AGTR2		AA
발목 부상 위험도	ACTN3	근육 수축과 이완을 포함한 근육 형성에 관여하는 유전자로, 특정 변이는 인대 손상에 영향을 미쳐 발목 부상 위험도를 증가시킬 수 있습니다.	СС
0.74	ATXN2L	GWAS 연구에서 악력 연관 유전자로 보고되고 있습니다.	TC
악력	TGFA	세포 증식과 관련이 있습니다.	GG
운동 후 회복 능력	GDF5	뼈, 연골형성 및 연골조직 분화 조절 과정에 관여하며, 운동 후 회복 능력 감소와 관련이 있습니다.	AA
포송 수 외속 증력	IL6R	운동 후 회복 능력과 관련이 있습니다.	СС
식욕	ANKK1	도파민 분비를 조절하는 유전자로 식욕과 관련성이 있습니다.	GG
포만감	FTO	식욕을 조절하는 호르몬인 그렐린과 렙틴 호르몬 수치에 관련되어 있습니다.	TT
단맛 민감도	TAS1R3	탄수화물 단맛 수용체를 인코딩하는데 중요한 역할을 합니다.	CC
쓴맛 민감도	TAS2R38	쓴 맛 및 음식 섭취에 대한 개별 민감도의 변화와 관련이 있습니다.	GA

검사항목	유전자명	유전자 기능	나의 결과
쓴맛 민감도	TAS2R38	쓴 맛 및 음식 섭취에 대한 개별 민감도의 변화와 관련이 있습니다.	CG
WID 0171 C	SCNN1B	나트륨 흡수 조절과 관련하여 나트륨 이온을 통과시켜 짠맛을 감지하는 이온 통로 유전자입니다.	TT
짠맛 민감도	TRPV1	다양한 자극에 의한 미각 감지와 관련된 유전자입니다.	TC

검사항목	유전자명	마커선정 근거논문	인종
1U A † †	OCA2	Abe et al. J Dermatol Sci. 2013;69(2):167-172	۸۵
색소침착	MC1R	Yamaguchi et al. J Hum Genet. 2012;57(11):700-708	AS
	WDR1-ZNF518B	Law et al. Journal of Investigative Dermatology. 2017;137(9):1887-1894	
	DEF8	Law et al. Journal of Investigative Dermatology. 2017;137(9):1887-1894	OS
피부노화	SLC36A3-SLC36A2	Law et al. Journal of Investigative Dermatology. 2017;137(9):1887-1894	
	HDAC4	Law et al. Journal of Investigative Dermatology. 2017;137(9):1887-1894	
	AGER	Bansal et al. Gene. 2013;526(2):325-30	AS, EU
남성형 탈모	chr20p11	Richards et al. Nat Genet. 2008;40(11):1282-1284	EU
모발굵기	EDAR	Fujimoto et al. Hum Mol Genet. 2008;17(6):835-843	AS
	BNC2	Endo et al. Scientific reports. 2018;8(1):1-22	
ᄀᄓᄼᄌᄀᅖ	EMX2OS-RAB11FIP2	Endo et al. Scientific reports. 2018;8(1):1-22	AS
기미/주근깨	AKAP1-MSI2	Endo et al. Scientific reports. 2018;8(1):1-22	
	PPARGC1B	Endo et al. Scientific reports. 2018;8(1):1-22	
	PCNX3	Petridis et al. Nature communications. 2018;9(1):1-8	EU
	SEMA4B	Petridis et al. Nature communications. 2018;9(1):1-8	
여드름 발생	TGFB2-LYPLAL1	Petridis et al. Nature communications. 2018;9(1):1-8	
	LYPLAL1-SLC30A10	Petridis et al. Nature communications. 2018;9(1):1-8	
-14 07	FAM72C	Baurecht et al. The American Journal of Human Genetics. 2015;96(1):104-120	
피부 염증	RNF145-UBLCP1	Baurecht et al. The American Journal of Human Genetics. 2015;96(1):104-120	· EU
	SLC45A2	Nan et al. Journal of Investigative Dermatology. 2009;129(9):2250-2257	- - EU,AM -
태양 노출 후	PPARGC1B	Nan et al. Journal of Investigative Dermatology. 2009;129(9):2250-2257	
태닝반응	GRM5	Nan et al. Journal of Investigative Dermatology. 2009;129(9):2250-2257	
	PRDM15	Nan et al. Journal of Investigative Dermatology. 2009;129(9):2250-2257	
튼살/각질	TMEM270-ELN	Tung et al. The Journal of investigative dermatology. 2013;133(11):2628	EU

유전자명	마커선정 근거논문	인종
HMCN1	Tung et al. The Journal of investigative dermatology. 2013;133(11):2628	EU
ACOXL	Betz et al. Nature communications. 2015;6(1):1-8	EU
IL2-IL21	Betz et al. Nature communications. 2015;6(1):1-8	
IL13	Betz et al. Nature communications. 2015;6(1):1-8	
IL2RA	Betz et al. Nature communications. 2015;6(1):1-8	
IRF4	Adhikari et al. Nature communications. 2016;7:10815	AM
SLC23A1	Timpson et al. The American journal of clinical nutrition. 2010;92(2):375-382	FIL
SLC23A2	Zanon-Moreno et al. Molecular vision. 2011;17:2997	EU
GC	Wang et al. Lancet. 2010 Jul 17;376(9736):180-188	EU
SWI5	Degenhardt et al. Human molecular genetics. 2016;25(13):2881-2891	EU
MUC1	Meyer et al. PLoS genetics. 2010;6(8)	EU
SLC30A3	Tatiane Jacobsen da Rocha, et al. Nutrition Research. 34.9 (2014): 742-748	AM
KCTD17-TMPRSS6	Raffield et al. Human molecular genetics. 2017; 26(10):1966-1978	· EU
TMPRSS6	Raffield et al. Human molecular genetics. 2017; 26(10):1966-1978	
CLASP1	Kanai et al. Nature genetics. 2018;50(3):390-400	
PRDM8-FGF5	Kanai et al. Nature genetics. 2018;50(3):390-400	4.6
HOTTIP	Kanai et al. Nature genetics. 2018;50(3):390-400	AS
TBX2	Kanai et al. Nature genetics. 2018;50(3):390-400	
BCAS3	Kanai et al. Nature genetics. 2018;50(3):390-400	4.6
BCAS1-CYP24A1	Kanai et al. Nature genetics. 2018;50(3):390-400	AS
AGXT2	Seppälä et al. European heart journal. 2014;35(8):524-531	
DDAH1	Seppälä et al. European heart journal. 2014;35(8):524-531	- EU -
PTPRE-MGMT	Seppälä et al. European heart journal. 2014;35(8):524-531	
NRX1-ASB3	Seppälä et al. European heart journal. 2014;35(8):524-531	
	HMCN1 ACOXL IL2-IL21 IL13 IL2RA IRF4 SLC23A1 SLC23A2 GC SWI5 MUC1 SLC30A3 KCTD17-TMPRSS6 TMPRSS6 CLASP1 PRDM8-FGF5 HOTTIP TBX2 BCAS3 BCAS1-CYP24A1 AGXT2 DDAH1 PTPRE-MGMT	HMCN1 Tung et al. The Journal of investigative dermatology, 2013;133(11);2628 ACOXL Betz et al. Nature communications. 2015;6(1):1-8 IL2-IL21 Betz et al. Nature communications. 2015;6(1):1-8 IL13 Betz et al. Nature communications. 2015;6(1):1-8 IL2RA Betz et al. Nature communications. 2015;6(1):1-8 IRF4 Adhikari et al. Nature communications. 2016;6(1):1-8 IRF4 Adhikari et al. Nature communications. 2016;7(10815) SLC23A1 Timpson et al. The American journal of clinical nutrition. 2010;92(2):375-382 SLC23A2 Zanon-Moreno et al. Molecular vision. 2011;17:2997 GC Wang et al. Lancet. 2010 Jul 17;376(9736):180-188 SWI5 Degenhardt et al. Human molecular genetics. 2016;25(13):2881-2891 MUC1 Meyer et al. PLoS genetics. 2010;6(8) SLC30A3 Tatiane Jacobsen da Rocha, et al. Nutrition Research. 34,9 (2014): 742-748 KCTD17-TMPRSS6 Raffield et al. Human molecular genetics. 2017; 26(10):1966-1978 TMPRSS6 Raffield et al. Human molecular genetics. 2017; 26(10):1966-1978 CLASP1 Kanai et al. Nature genetics. 2018;50(3):390-400 PRDM8-FGF5 Kanai et al. Nature genetics. 2018;50(3):390-400 HOTTIP Kanai et al. Nature genetics. 2018;50(3):390-400 BCAS3 Kanai et al. Nature genetics. 2018;50(3):390-400 BCAS3 Kanai et al. Nature genetics. 2018;50(3):390-400 BCAS1-CYP24A1 Kanai et al. Nature genetics. 2018;50(3):390-400 BCAS1-CYP24A1 Kanai et al. Nature genetics. 2018;50(3):390-400 BCAS1-CYP24A1 Kanai et al. Nature genetics. 2018;50(3):390-400 Seppalä et al. European heart journal. 2014;35(8):524-531 DDAH1 Seppalä et al. European heart journal. 2014;35(8):524-531

검사항목	유전자명	마커선정 근거논문	인종
	FFAR1	Walker et al. PloS one. 2011;6(4) Auinger et al. The Journal of nutrition. 2010;140(8):1411-1417	
지방산 농도	FABP2		
	ADIPOR2	Yang et al. Metabolic syndrome and related disorders. 2016;14(7):368-371	
	PKD1L2	Ferrucci et al. The American Journal of Human Genetics. 2009;84(2):123-133	
비타민 A 농도		Hendrickson et al. The American journal of clinical nutrition. 2012;96(6) :1379-1389	EU
	PKD1L2-BCO1	Ferrucci et al. The American Journal of Human Genetics. 2009;84(2):123-133	
비타민 B6 농도	NBPF3-ALPL	Olde Loohuis et al. Genes. 2019;10(1):8	EU
	ZPR1	Major et al. Human molecular genetics. 2011;20(19):3876-3883	
비타민 E 농도	CYP4F2	Major et al. Human molecular genetics. 2011;20(19):3876-3883	EU
	SCARB1	Major et al. Human molecular genetics. 2011;20(19):3876-3883	
비타민 K 농도	TMED7-CDO1	Dashti et al. The American journal of clinical nutrition. 2014;100(6):1462-1469	
비타민 B12 농도	CUBN	Hazra et al. Human molecular genetics. 2009;18(23):4677-4687 Hazra et al. Human molecular genetics. 2009;18(23):4677-4687	
	MUT		
타이로신 농도	TM6SF2	Kim et al. Journal of lipid research. 2017;58(7):1471-1481	
	TAT-MARVELD3	Kettunen et al. Nature genetics. 2012;44(3):269	
	REV3L	Kettunen et al. Nature genetics. 2012;44(3):269	_
	BHMT2	Hartiala et al. Nature communications. 2016;7(1):1-10	
베타인 농도	BHMT-JMY	Hartiala et al. Nature communications. 2016;7(1):1-10	
	CPS1	Hartiala et al. Nature communications. 2016;7(1):1-10	
	ВНМТ	Cornelis et al. Human molecular genetics. 2015;24(5):1469-1477	EU,AM
셀레늄 농도	NEIL3-AGA	Gong et al. Nutrients. 2013;5(5):1706-1718	
	SLC39A11	Gong et al. Nutrients. 2013;5(5):1706-1718	EU
루테인&지아잔틴	BCO1	Yonova-Doing et al. Experimental eye research. 2013;115:172-177	– EU
농도	PKD1L2-BCO1	Hendrickson et al. The American journal of clinical nutrition. 2012;96(6):1379-1389	

검사항목	유전자명	마커선정 근거논문	인종
루테인&지아잔틴 농도	PKD1L2-BCO1	Yonova-Doing et al. Experimental eye research. 2013;115:172-177	EU
	TRIB1-FAM84B	Hoffmann et al. Nature genetics. 2018;50(3):401-413	
	AQP9-LIPC	Hoffmann et al. Nature genetics. 2018;50(3):401-413	— AM,AS
	GCKR	Hoffmann et al. Nature genetics. 2018;50(3):401-413	_
중성지방농도	TBL2	Willer et al. Nat Genet 2013;45:1274–1283	
	TRIB1	Kathiresan et al. Nat Genet. 2008;40(2):189-197	
	ANGPTL3	Willer et al. Nat Genet. 2008;40(2):161-169	— EU
	MLXIPL	Kooneret al. Nat Genet. 2008;40(2):149-151	EU,AM,AS
	MC4R	Thorleifsson et al. Nat Genet. 2009;41:18–24	
+11.71.71.4	BDNF	Thorleifsson et al. Nat Genet. 2009;41:18–24	
체질량지수		Speliotes et al. Nat Genet. 2010;42:937–948	- EU
	FTO	Thorleifsson et al. Nat Genet. 2009;41:18–24	_
	SNX13	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	-
	APOA5-APOA4	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	
	CMIP	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	_
	HPR	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	— AS
콜레스테롤	POLK	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	_
	MYRF	Spracklen et al. Human molecular genetics. 2017;26(9):1770-1784	
	СЕТР	Willer et al. Nat Genet. 2008;40(2):161-169	EU
<u></u> 혈당		Burkhardt et al. Arterioscler Thromb Vasc Biol. 2008;28(11):2078-2084	OS
	HMGCR	Kathiresan et al. Nat Genet. 2008;40(2):189-197 Willer et al. Nat Genet. 2008;40(2):161-169	
	KCNQ1	Kanai et al. Nature genetics. 2018;50(3):390-400	
	CDKAL1	Kanai et al. Nature genetics. 2018;50(3):390-400	
	SLC30A8	Kanai et al. Nature genetics. 2018;50(3):390-400	-
		_	

검사항목	유전자명 마커선정 근거논문		인종	
혈당	SIX3-SIX2	Kanai et al. Nature genetics. 2018;50(3):390-400		
	CDKN2A/B	Hwang et al. Diabetes. 2015;64(1):291-298	AS	
	MTNR1B	Dupuis et al. Nat Genet. 2010 Feb;42(2):105-116		
	DGKB-TMEM195	Hwang et al. Diabetes. 2015;64(1):291-298		
	GCK	Dupuis et al. Nat Genet. 2010 Feb;42(2):105-116		
	NPR3	Kato et al. Nat Genet. 2011;43(6):531-538	AS	
싫으	FGF5	International Consortium for Blood Pressure Genome-Wide Association Studies. Nature. 2011;478(7367):103-109		
혈압	ATP2B1	Kato et al. Nat Genet. 2011;43(6):531-538	EU	
	CYP17A1	Lu et al. Hum Mol Genet. 2015;24(3):865-874		
	FTO	Wardle et al. The Journal of Clinical Endocrinology & Metabolism. 2008;93 (9):3640–3643		
비만	CLOCK	Galbete et al. Chronobiology International. 2012;29:1397-1404		
멀미	HMX3-GPR26	Hromatka et al. Human molecular genetics. 2015;24(9):2700-2708		
	WNT4-ZBTB40	Estrada et al. Nature genetics. 2012;44(5):491		
272	ZNF621-CTNNB1	Estrada et al. Nature genetics. 2012;44(5):491		
골질량	MEPE-SPP1	Estrada et al. Nature genetics. 2012;44(5):491		
	COLEC10	Estrada et al. Nature genetics. 2012;44(5):491	1	
	MIR572-RAB28	Tachmazidou et al. Nature genetics. 2019;51(2):230-236		
	LTBP1	Tachmazidou et al. Nature genetics. 2019;51(2):230-236		
퇴행성 관절염증 감수성	GLIS3	Tachmazidou et al. Nature genetics. 2019;51(2):230-236		
	TGFA	Tachmazidou et al. Nature genetics. 2019;51(2):230-236		
	CRADD	Tachmazidou et al. Nature genetics. 2019;51(2):230-236		
0.11+1	BCAS3	Kanai et al. Nature genetics. 2018;50(3):390-400	AS	
요산치	MPPED2-DCDC1	Kanai et al. Nature genetics. 2018;50(3):390-400		
체지방률	PLCE1	Hübel et al. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2019;180(6):428-438		

검사항목	유전자명	마커선정 근거논문	인종
	WSCD2	Hübel et al. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2019;180(6):428-438	
체지방률	PEPD	Hübel et al. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2019;180(6):428-438	
	IQCH	Hübel et al. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2019;180(6):428-438	
	VEGFA-MRPL14	Winkler et al. PLoS genetics. 2015;11(10)	
복부비만(엉덩이 허리 비율)	SSPN-ITPR2	Winkler et al. PLoS genetics. 2015;11(10)	
	KCNJ2-CASC17	Winkler et al. PLoS genetics. 2015;11(10)	
	CYYR1	Sarzynski et al. Br J Sports Med. 2015;49(23):1524-1531	
운동에 의한	DCC-MBD2	Sarzynski et al. Br J Sports Med. 2015;49(23):1524-1531	АМ
체중감량 효과	CRTC3	Sarzynski et al. Br J Sports Med. 2015;49(23):1524-1531	
	PRRX2	Sarzynski et al. Br J Sports Med. 2015;49(23):1524-1531	
체중감량 후	FBLN5	Roumans et al. Genes & nutrition. 2015;10(6):56	
체중회복 가능성 (요요 가능성)	LAMB1	Roumans et al. Genes & nutrition. 2015;10(6):56	
	CYP1A2	Djordjevic et al. Eur J Clin Pharmacol. 2010;66:697–703	
카페인 대사	AGR3-AHR	Cornelis et al. Molecular psychiatry. 2015;20(5):647	
		Jorgenson et al. Molecular psychiatry. 2017;22(9):1359-1367	AS
	ALDH2	Dickson et al. Alcoholism: Clinical and Experimental Research. 2006;30(7):1093-1100	
알코올 대사	HECTD4	Jorgenson et al. Molecular psychiatry. 2017;22(9):1359-1367 Tsuchihashi-Makaya et al. Hypertension Research. 2009;32(3):207-213	
	ADH1B		
알코올 의존성	PKNOX2	Wang et al. Journal of psychiatric research. 2011;45(11):1419-1425	OS
	ESR1	Treutlein et al. Archives of general psychiatry. 2009;66(7):773-784	
	SERINC2	Zuo et al. Neuropsychopharmacology. 2012;37(2):557-566	
	IDO1-ZMAT4	Gelernter et al. Alcoholism: Clinical and Experimental Research. 2018;42(5) :861-868	AS
알코올 홍조	MOB2-DUSP8	Gelernter et al. Alcoholism: Clinical and Experimental Research. 2018;42(5) :861-868	
와인 선호도	ARL15	Pirastu et al. European Journal of Human Genetics. 2015;23(12):1717-1722	EU,AS
	_		

검사항목	유전자명	마커선정 근거논문	
와인 선호도	MROH5-TSNARE1	Pirastu et al. European Journal of Human Genetics. 2015;23(12):1717-1722	EU,AS
니코틴 대사	CYP2A6	Patel et al. Cancer research. 2016;76(19):5768-5776	АМ
	ICE1-UBE2QL1	Hällfors et al. Addiction biology. 2019;24(3):549-561	
	QSOX2-GPSM1	Hällfors et al. Addiction biology. 2019;24(3):549-561	EU
니코틴 의존성	FERD3L-TWISTNB	Hällfors et al. Addiction biology. 2019;24(3):549-561	
	GNAL	Hällfors et al. Addiction biology. 2019;24(3):549-561	
	CPLX3-ULK3	Amin et al. Molecular psychiatry. 2012;17(11):1116-1129	
카페인 의존성	CAB39L	Amin et al. Molecular psychiatry. 2012;17(11):1116-1129	EU
불면증	SMAD5	Lane et al. Nature genetics. 2019;51(3):387-393	EU
스러스코 / 니기	RBFOX1	Dashti et al. Nature communications. 2019;10(1):1-12	
수면습관/시간	CA10-KIF2B	Dashti et al. Nature communications. 2019;10(1):1-12	
	VAMP3	Hu et al. Nature communications. 2016;7(1):1-9	
아침형, 저녁형 인간	FAM185A	Hu et al. Nature communications. 2016;7(1):1-9	EU
E & D 7.4	COMT	Martínez□Jauand et al. European Journal of Pain. 2013;17(1):16-27	
통증 민감성	OPRM1	Solak et al. Rheumatology international. 2014;34(9):1257-1261	AM
73 OF 74 H	ACTN3	Yang et al. The American Journal of Human Genetics. 2003;73(3):627-631	
근력 운동 적합성	AGT	Gomez-Gallego et al. Applied Physiology, Nutrition, and Metabolism. 2009;34(6):1108-1111	
	NOS3	Higashibata et al. Lipids in health and disease. 2012;11(1):150	
	PPARGC1A	Nishida et al. Internal Medicine. 2015;54(4):359-366	AS
유산소 운동 적합성	VEGFA	Buxens et al. Scandinavian journal of medicine & science in sports. 2011;21 (4):570-579	
	KDR	Ahmetov et al. European journal of applied physiology. 2009;107(1):95-103	
지그려 오드 자치보	VEGFA	Ahmetov et al. Hum Genet. 2009;126(6):751-761	EU
지구력 운동 적합성	PPARD	Ahmetov et al. Hum Genet. 2009;126(6):751-761	
근육발달 능력	AGT	Gomez-Gallego et al. Applied Physiology, Nutrition, and Metabolism. 2009;34(6):1108-1111	

유전자명	마커선정 근거논문		
TRHR	Liu et al. The American Journal of Human Genetics. 2009;84(3):418-423	AM,AS	
AGTR2	Mustafina et al. Experimental physiology. 2014;99(8):1042-1052	EU	
SLC16A1	Massidda et al. International journal of sports medicine. 2018;39(13):1028-1034	EU	
AGTR2	Yvert et al. Biology of sport. 2018;35(2):105	AS, EU	
ACTN3	Kim et al. Journal of exercise nutrition & biochemistry. 2014;18(2):205	AS	
ATXN2L	Tikkanen et al. Scientific reports. 2018;8(1):1-9		
TGFA	Tikkanen et al. Scientific reports. 2018;8(1):1-9	EU	
GDF5	Posthumusl et al. Rheumatology. 2010;49(11):2090–2097		
IL6R	Burger et al. Gene. 2015;564(1):67-72	AF	
ANKK1	Epstein et al. Behav Neurosci. 2007;121(5):877-886		
FTO	Hoed et al. The American Journal of Clinical Nutrition. 2009;90(5):1426–1432		
TAS1R3	Fushan et al. Curr Biol. 2009;19(15):1288-1293		
TAS2R38	Kim et al. American Association for the Advancement of Science. 2003;299:1221-1225		
SCNN1B	Dias et al. Chemical senses. 2013;38(2):137-145		
TRPV1	Dias et al. Chemical senses. 2013;38(2):137-145	——— AM	
	TRHR AGTR2 SLC16A1 AGTR2 ACTN3 ATXN2L TGFA GDF5 IL6R ANKK1 FTO TAS1R3 TAS2R38 SCNN1B	TRHR Liu et al. The American Journal of Human Genetics. 2009;84(3):418-423 AGTR2 Mustafina et al. Experimental physiology. 2014;99(8):1042-1052 SLC16A1 Massidda et al. International journal of sports medicine. 2018;39(13):1028-1034 AGTR2 Yvert et al. Biology of sport. 2018;35(2):105 ACTN3 Kim et al. Journal of exercise nutrition & biochemistry. 2014;18(2):205 ATXN2L Tikkanen et al. Scientific reports. 2018;8(1):1-9 TGFA Tikkanen et al. Scientific reports. 2018;8(1):1-9 GDF5 Posthumusl et al. Rheumatology. 2010;49(11):2090–2097 IL6R Burger et al. Gene. 2015;564(1):67-72 ANKK1 Epstein et al. Behav Neurosci. 2007;121(5):877-886 FTO Hoed et al. The American Journal of Clinical Nutrition. 2009;90(5):1426–1432 TAS1R3 Fushan et al. Curr Biol. 2009;19(15):1288-1293 TAS2R38 Kim et al. American Association for the Advancement of Science. 2003;299:1221-1225 SCNN1B Dias et al. Chemical senses. 2013;38(2):137-145	

🕎 분석 안내서

개인정보 보호 관리규정

정보통신망 이용촉진 등에 관한 법□상의 개인정보 보호규정 및 정보통신부가 제정한 □개인정보 보호지침□을 준수하며, 개인정보처리 방침 안내 후 의뢰되고 있습니다.

`생명 윤리 및 안전에 관한 법률` 제 52조에 근거하여 유전자 검사 동의서 및 유전자 검사결과는 10 년간 보관하며, 검사 대상물의 제공에 대한 기록(전자문서 포함)은 5년간 보관됩니다.

`생명 윤리 및 안전에 관한 법률` 제 53조에 근거하여 검체의 보존기간은 유전자검사결과 획득 후 즉시폐기하고, 문서 및 컴퓨터 파일로 보관된 유전정보 및 개인정보는 □개인정보 보호법 시행령□ 제 16조에따라 파기합니다.

본 서비스를 통해 수집 및 생성된 개인정보는 본 검사의 목적 이외에는 사용되지 않으며, `개인정보보호법` 제 23조에 근거하여 분실, 도난, 유출, 위조, 변조 또는 훼손되지 않도록 안전하게 관리하고 있습니다.

검사의 제한성 및 주의사항

본 검사에서 제공하는 결과는 해당항목에 영향을 주는 환경 및 생환 습관 등 다른 요인을 고려하지 않고 유전자형에만 근거하여 분석하므로 현재의 상태와 다를 수 있습니다.

본 검사는 유전적 위험도를 예측하는 자료이며 위험도가 높다고 하여 반드시 해당 항목(표현형) 차이가 발생한다는 의미는 아니며, 위험도가 낮다고 해서 해당 항목(표현형) 차이가 발생하지 않는다는 의미는 아닙니다.

검사에 사용된 유전자 종류 및 데이터베이스에 따라 다른 회사의 결과와 다를 수 있으며, 인종에 따라 유전자형 분포와 위험도 결과에 차이가 있을 수 있습니다.

본 검사 결과지는 검사 대상자 본인에게만 제공되며, 본인 외의 자가 결과지에 포함된 정보의 전부 또는 일부를 제3자에 공개, 배포, 복사하는 등의 행위는 엄격히 금지하고 있습니다.

본 검사는 검사 결과가 갖는 임상적 의미가 확립되지 않았으며, 이에 따르는 건강에 관련된 행위가 유용하다는 객관적 타당성이 아직 부족합니다.

생명윤리법 제 46조 유전정보에 의한 차별금지 규정에 의해 유전정보를 이유로 교육, 고용, 승진, 보험 등 사회활동에서 다른 사람을 차별할 수 없으며, 다른 법률에 특별한 규정이 있는 경우를 제외하고는 타인에게 유전자검사를 강요하거나 유전자검사 결과를 제출하도록 강요할 수 없습니다.

각 항목과 관계가 있는 모든 유전자를 분석한 것은 아니며, 결과와 해석은 새로운 정보가 추가됨에 따라 변경 될 수 있습니다. (ver. 1.0 : 2021.04.01)

🗽 분석 안내서

ID/리프트 코드	20221122-56399	검체 수집일	2022년 11월 21일
검체종류	Buccal swab	결과 보고일	2022년 11월 22일
LCR/Genome sequencing			

정도관리 결과

본 검사는 SNP marker의 유전자형을 유전자 증폭하여 차세대염기서열분석(NGS)으로 확인하는 검사로 표준업무절차에 따라 결과를 확인하여 검사 과정에 문제가 없었는지 확인하고 있습니다.

	passed failed		적합기준
QC Result	Descrip	DNA QC	DNA purity ; 1.75 ~ 2.0, DNA amounts ; >500 ng
	Passed	Analytical QC	library concentration ; > 4nM Q30 ; > 80% GC % ; 40%~60%

검사 담당자	검사 책임자	검사실 책임자
김휘람 / / / / / / / / / / / / / / / / / / /	오은설 Ph.D.	김소영 M.D., Ph.D.

- 본 검사는 보험비등재 조제시약(검사실 자체개발 시약) 검사입니다.
- 본 검사 결과는 질병의 진단 및 치료의 목적으로 사용될 수 없습니다.
- 의학적인 소견이 필요한 경우 의사와 상담하시기 바랍니다.

LabGenomics

•검사기관 정보•

경기도 성남시 분당구 대왕판교로 700, 코리아바이오파크 B동 5층 TEL | 031-628-0700 FAX | 031-628-0679

유전자 검사기관 번호 : 제 23호